một người đi xe máy từ A đến B với vân tốc 40km/h. Khi đi từ B trở về A, người đó tăng vận tốc thêm 10km/h so với lúc đi, nên thời gian về ít hơn thời gian đi là 30 phút. Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{45}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{9x}{360}-\dfrac{8x}{360}=\dfrac{90}{360}\)
\(\Leftrightarrow9x-8x=90\)
hay x=90(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 90km
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{40}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)(tmđk)
Vậy sAB là: 90km
Đổi 40 phút = 2/3 giờ
Gọi độ dài quãng đường AB là x(km) với x>0
Vận tốc lúc về của người đó là: \(40.1,2=48\) (km/h)
Thời gian đi từ A đến B: \(\dfrac{x}{40}\) giờ
Thời gian từ B về A: \(\dfrac{x}{48}\) giờ
Do thời gian về ít hơn thời gian đi 2/3 giờ nên ta có pt:
\(\dfrac{x}{40}-\dfrac{x}{48}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{x}{240}=\dfrac{2}{3}\)
\(\Rightarrow x=160\left(km\right)\)
Bạn tách ra nhá
Thôi, mình làm câu 1:
Vì thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
V xuôi/V ngược = T ngược/T xuôi = 40/30 = 4/3
Ta có sơ đồ:
T xuôi: |-----|-----|-----| 30 phút
T ngược:|-----|-----|-----|-----|
T xuôi là:
30 : (4 - 3) x 3 = 90 phút = 1,5 giờ
Quãng đường là:
1,5 x 40 = 60km
Đ/s:..
Vì quãng đường AB không đổi nên ta có :Đổi: \(45ph=\dfrac{3}{4}h\)
Gọi thời gian người đó đi từ A đến B là x (h) (x > 0)
Thời gian người đó từ B về A là
\(x-\dfrac{3}{4}\left(h\right)\)
Quãng đường người đó đi từ A đến B là 30x (km)
Quãng đường người đó đi từ A đến B là:
\(40.\left(x-\dfrac{3}{4}\right)=40x-30\left(km\right)\)
Vì quãng đường AB không đổi nên ta có :\(40x-30=30x\Leftrightarrow10x=30\Leftrightarrow x=3\left(h\right)\)Độ dài quãng đường AB là:
\(30.3=90\left(km\right)\)Gọi độ dài quãng đường AB là x
Thời gian đi là x/30(h)
Thời gian về là x/35(h)
Theo đề, ta có x/30-x/35=1/3
hay x=70
Vận tốc khi về là: 30+5=35(km/h)
Đổi 20'=\(\dfrac{1}{3}h\)
Gọi quãng đường a đến b là x (x>0)
Thời gian khi đi là \(\dfrac{x}{30}\left(h\right)\)
Thời gian khi về là \(\dfrac{x}{35}\left(h\right)\)
Theo bài ra ta có pt:
\(\dfrac{x}{30}=\dfrac{x}{35}+\dfrac{1}{2}\\
\Leftrightarrow\dfrac{7x}{210}-\dfrac{6x}{210}=\dfrac{105}{210}\\ \Leftrightarrow7x-6x=105\\
\Leftrightarrow x=105\left(tm\right)\)
Vậy quãng đường a đến b là 105km
Gọi quãng đường AB là \(x\left(x>0\right)\left(km\right)\)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B đến A là :\(\dfrac{x}{50}\left(h\right)\)
Do t/g về it ít hơn t/g đi là 30p \(\left(=\dfrac{1}{2}h\right)\)nên ta có :
\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{50x-40x-1000}{2000}=0\)
\(\Leftrightarrow10x=1000\)
\(\Leftrightarrow x=100\left(n\right)\)
Vậy ....
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\Rightarrow x=100\left(tm\right)\)
$20'=\dfrac{1}{3}h$
Gọi $x(km)$ là độ dài quãng đường AB $(x>0)$
Thời gian đi từ A đến B là: $\dfrac{x}{40}(h)$
Vận tốc đi từ B về A là: $40+15=55(km/h)$
Thời gian đi từ B về A là: $\dfrac{x}{55}(h)$
Theo đề bài, ta có phương trình:
$\dfrac{x}{40}-\dfrac{x}{55}=\dfrac{1}{3}$
$⇔(\dfrac{1}{40}-\dfrac{1}{55}).x=\dfrac{1}{3}$
$⇔x=\dfrac{1}{3}:(\dfrac{1}{40}-\dfrac{1}{55})=\dfrac{440}{9}≃49 \ \ \text{(nhận)}$
Gọi quãng đường AB là x(x>0;km/h)
Thời gian lúc đi là :x/40(h)
Vận tốc lúc về là : 40+10=50(km/h)
Thời gian lúc về là:x/50
Ta có phương trình:x/40-x/50=3/4
<=>5x-4x=150
<=>x = 150
Vậy quãng đường AB dài 150km
Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)
Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow7x=60\)
\(\Leftrightarrow x=\dfrac{60}{7}\) (N)
Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{14}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)
Vậy: Độ dài quãng đường AB là 90km