Hai tổ làm chung 1 công việc trong 12h thì xong . Nếu tổ 1 làm trong 3h , tổ 2 làm trong 5h thì được 25% công việc . Hỏi mỗi tổ làm riêng thì xong công việc đó trong bao lâu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)
thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)
(Điều kiện: x>15; y>15)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Theo đề, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\)(1)
Vì nếu tổ 1 làm trong 3 giờ và tổ 2 làm trong 5 giờ thì được 25% công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=\dfrac{-1}{20}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=40\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{40}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=40\end{matrix}\right.\)
Vậy: Tổ 1 cần 24 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 40 giờ để hoàn thành công việc khi làm một mình
Gọi x là lượng công việc mà tổ (I) làm trong 1h, y là lượng công việc mà tổ (II) làm trong 1h
Mà tổ (I) và (II) cùng làm với nhau trong 12h thì xong 11 công việc nên ta có phương trình:
12(x+y)=112(x+y)=1 (1)
Mặt khác 2 tổ cùng làm trong 4h thì tổ (I) đi làm việc khác và tổ (II) làm nốt trong 10h nữa thì xong công việc nên ta có phương trình:
4(x+y)+10y=14(x+y)+10y=1 (2)
Kết hợp phương trình (1) và phương trình (2) ta có hệ phương trình:
12(x+y)=1
4(x+y)+10y=1
Giải HPT ta được x=1/ 60 và y=1/15
⇒⇒ Tổ (I) làm một mình trong 60h thì xong công việc.
Tổ (II) làm một mình trong 15h thì xong công việc.
Bn tham khảo nha
Gọi a(giờ) và b(giờ) lần lượt là thời gian tổ 1 và tổ 2 hoàn thành công việc khi làm riêng(Điều kiện: a>12; b>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{a}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{b}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\)(1)
Vì khi 2 tổ cùng làm trong 4 giờ thì tổ 1 được điều đi làm việc khác và tổ 2 làm nốt trong 10 giờ thì xong công việc nên ta có phương trình:
\(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{10}{b}=1\)
\(\Leftrightarrow\dfrac{4}{a}+\dfrac{14}{b}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+\dfrac{4}{b}=\dfrac{1}{3}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-10}{b}=\dfrac{-2}{3}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-30}{-2}=15\\\dfrac{1}{a}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\\b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm riêng
Tổ 2 cần 15 giờ để hoàn thành công việc khi làm riêng
Gọi thời gian đội 2 làm một mình hoàn thành công việc là x (giờ , x > 12)
=> Trong 1 giờ tổ 2 làm một minh được : 1/x (công việc)
Hai tổ làm chung hoàn thành trong 12 giờ
Trong thực tế 2 tổ làm chung được 4 giờ
=> Hai tổ làm chung được 4/12 = 1/3 (công việc)
=> Tổ 2 làm một mình hết 2/3 công việc trong 10 giờ
=> Trong 1 giờ tổ 2 làm một mình được :
(2/3)/10 = 2/30 = 1/15 (công việc)
Ta có : 1/x = 1/15 <=> x = 15
Vậy tổ 2 làm một mình thì sau bao lâu 15 giờ sẽ hoàn thành công việc
Gọi thời gian hoàn thành công việc khi làm một mình của tổ 1 và tổ 2 lần lượt là a,b
Trong 1h, tổ 1 làm được 1/a(công việc)
Trong 1h, tổ 2 làm được 1/b(công việc)
Theo đề, ta có hệ:
1/a+1/b=1/15 và 3/a+5/b=1/4
=>3/a+3/b=1/5 và 3/a+5/b=1/4
=>-2/b=-1/20 và 1/a+1/b=1/15
=>b=40 và 1/a=1/15-1/40=8/120-3/120=5/120=1/24
=>a=24 và b=40
Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)
y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)
Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:
12x+12y=1 (1)
nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên
10x+3y=7/12 (2)
(1),(2) ta có hệ phương trình:
12x+12y=1
10x+3y=7/12
⇒x=1/21(TM); y=1/28(TM)
Vậy Tổ (I)làm một mình trong 21h thì xong công việc.
Tổ (II) làm một mình trong 28h thì xong công việc.
Gọi x(h) là thời gian tổ 1 làm một mình hoàn thành công việc
y(h) là thời gian tổ 2 làm một mình hoàn thành công việc
(Điều kiện: x>12; y>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì khi tổ 1 làm trong 3 giờ, tổ 2 làm trong 5 giờ thì được 25% công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\)
Hình như đề sai rồi bạn