K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Ta thấy dãy số trên khi quy đồng mẫu số chứa lũy thừa của 3 với số mũ lớn nhất là 34 => khi quy đồng mẫu số, các phân số đều có tử chia hết cho 3 chỉ có phân số 1/81 có tử không chia hết cho 3

=> S có tử không chia hết cho 3, mẫu chia hết cho 3, không là số tự nhiên (đpcm)

bài này còn có 1 vài cách nữa nhưng nó hơi dài nên mk lm cách này

25 tháng 11 2016

Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24

Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ

Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)

25 tháng 11 2016

help me every body! Thanks

11 tháng 8 2019

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1012^2}\)

\(S=1+\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1024144}\right)\)

\(S=1+\left(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{2012\cdot2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2012}\right)\)

\(S=1+\frac{1005}{2012}\)

\(S=\frac{3017}{2012}\)

28 tháng 3 2019

\(S=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}>\frac{1}{101}+\frac{1}{101}+\frac{1}{101}+...\frac{1}{101}\)(97 phân số\(\frac{1}{101}\))

\(S=\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}>\frac{97}{101}\)\(\Rightarrow S< 1\)

Do \(0< S< 1\)nên \(S\)không phải là số tự nhiên

28 tháng 3 2019

cảm ơn hùng

17 tháng 8 2016

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+...+\frac{3}{14}\)

Đặt \(B=\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)

\(S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow1< S< 2\)

Vậy S không phải STN

14 tháng 10 2015

Quy đồng A ta có:

A = \(\frac{7.9.11...101+5.9.11...101+...+5.7.9...99}{5.7.9...101}\)

Nhận xét:

Các tích 7.9.11...101;....;  5.7.9...97.101 đều chia hết cho 101 nhưng 5.7.9....99 không chia hết cho 101 nên A có  tử số không chia hết cho 101

Mà mẫu chia hết cho 101; 101 là số nguyên tố

=> Tử không chia hết cho mẫu

=> A là phân số  

22 tháng 6 2021

@Trần Thị Loan: Vì sao \(5.7.9...99⋮̸11\)vậy bn?

DD
24 tháng 8 2021

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=2-\frac{1}{2012}< 2\)

mà \(S>1\)

do đó ta có đpcm. 

4 tháng 3 2015

1/16+1/2=9/16 không phải là số tự nhiên

 

9 tháng 3 2015

Có thể chứng minh được S>2 đó!