tìm 2 số biết tỉ số của chúng là 3/5 và tổng các bình phương của chúng là 132
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số cần tìm là a,b
Theo đề, ta có: a/3=b/5=k và a^2+b^2=132
=>a=3k; b=5k
a^2+b^2=132
=>9k^2+25k^2=132
=>k^2=132/34
=>k^2=66/17
Th1: k=căn 66/17
=>\(a=3\sqrt{\dfrac{66}{17}};b=5\sqrt{\dfrac{66}{17}}\)
Th2: \(k=-\sqrt{\dfrac{66}{17}}\)
=>\(a=-3\sqrt{\dfrac{66}{17}};b=-5\sqrt{\dfrac{66}{17}}\)
gọi 2 số cần tìm là a và b
ta có:
a/b=5/7
=>a/5=b/7 và a^2+b^2=4736
a/5=b/7=>a^2/25=b^2/49
áp dụng ............ ta có:
a^2/25=b^2/49=a^2+b^2/25+49=4736/74=64
=>a^2/25=64=>a^2=1600=>a=40 hoặc a= -40
=>b^2/49=64=>b^2=3136=>b=56 hoặc b=-56
Bấm vô đây:
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath
Gọi 2 số cần tìm là a và b
\(\Rightarrow\frac{a}{b}=\frac{5}{7}\)
\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)
Mặt khác
\(a^2+b^2=4736\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\Rightarrow\begin{cases}a=\pm40\\b=\pm56\end{cases}\)
Mà 5.7>0
=> \(a.b\ge0\)
\(\Rightarrow\left(a;b\right)=\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)
Gọi hai số đó là a và b.
Theo đề ta có:
a/b = 5/7 <=> 7a = 5b <=> b = (7/5)a
Cũng theo đề,
a² + b² = 4736
<=> a² + [(7/5)a]² = 4736
74a² = 118400
a² = 1600
a = 40
b =(7*40)/5 = 56
Đáp số: 40; 56
Gọi 2 số đó là a và b.
\(\frac{a}{b}=\frac{5}{7}\) ( từ đó suy ra a ; b cùng dấu )
\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\frac{a^2}{25}=64\Rightarrow a^2=1600\Rightarrow a\in\left\{40;-40\right\}\)
\(\frac{b^2}{49}=64\Rightarrow b^2=3136\Rightarrow b\in\left\{56;-56\right\}\)
Mà a ; b cùng dấu nên :
\(\left(a;b\right)\in\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)
Gọi 2 số cần tìm là a và b
Ta có tỉ số giữa chúng là 2/4
\(\dfrac{a}{2}=\dfrac{b}{4}\)
Và tổng bình phương của chúng là 117 => \(a^2+b^2=117\)
nên ta có: \(\dfrac{a^2}{4}=\dfrac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{4}=\dfrac{b^2}{16}=\dfrac{a^2+b^2}{4+16}=\dfrac{117}{20}=5,85\)
Ta có:
\(\dfrac{a^2}{4}=5,85\Rightarrow\left[{}\begin{matrix}a=\sqrt{23,4}\\a=-\sqrt{23,4}\end{matrix}\right.\)
\(\dfrac{b^2}{16}=5,85\Rightarrow\left[{}\begin{matrix}b=\sqrt{93,6}\\b=-\sqrt{93,6}\end{matrix}\right.\)
Gọi 2 số cần tìm là a; b
Ta có \(\frac{a}{b}=\frac{5}{7}\Rightarrow\frac{a}{5}=\frac{b}{7}=\frac{a^2}{25}=\frac{b^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a^2}{25}=\frac{b^2}{49}\Rightarrow\frac{a^2+b^2}{25+49}=\frac{4736}{74}\)
Suy ra
\(\frac{a^2}{25}\)= 64 ⇒ a 2 = 64.25 = 1600 ⇒ a = 40 hoặc a = - 40
\(\frac{b^2}{49}\)= 64 ⇒ b 2 = 64.49 = 3136 ⇒ b = 56 hoặc b = - 56
~ Chúc bạn học tốt ~