Cho tam giác ABC, có đường phân giác AD, đường cao BH và đường trung tuyến CE đồng qui. Chứng minh SAHI = SBID
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
27 tháng 3 2022
-Xét △ABC có: H∈AC, D∈BC, E∈AB ; AD, BH, CE đồng quy
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\) (định lí Ceva)
\(\Rightarrow\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\Rightarrow\dfrac{HA}{HC}=\dfrac{DB}{DC}\)
\(\Rightarrow\)HD//AB (định lí Ta-let đảo)
30 tháng 9 2016
- Giải PT \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)
13 tháng 6 2019
\(\sqrt[3]{\left(x+1\right)^2+\sqrt[3]{\left(x-1\right)^2}+\sqrt[]{x^2}-1=1}\)
27 tháng 3 2017
thử vào link này xem đi
http://pitago.vn/question/cho-tam-giac-abc-uong-trung-tuyen-ad-duong-cao-bh-duong-15.html
-Xét △ABC có: E thuộc AB, D thuộc BC, H thuộc AC và AD, BH, CE đồng quy tại I.
\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}.\dfrac{EB}{EA}=1\) (định lí Ceva).
\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}=1\)
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{DB}{DC}\Rightarrow\)HD//AB.
\(\Rightarrow S_{ABD}=S_{ABH}\Rightarrow S_{ABD}-S_{ABI}=S_{ABH}-S_{ABI}\Rightarrow S_{IBD}=S_{AIH}\)