1/3+1/6+1/10+...+1/x(x+1)=1 2013/2015
(kết quả là hỗn số 1 2013 phân 2015)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\cdot\left(x+1\right)}=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}:2\)
\(\Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}-\frac{1}{2}\)
\(\Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\Rightarrow x+1=2015\Rightarrow x=2014\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
tự làm tiếp nhé mk ăn cơm đã
2/6+2/12+2/20+...+2/x(x+2)=2013/2015
2(1/2.3+1/3.4+...+1/x(x+1))=2013/2015
2(1/2-1/3+1/3-1/4+...+1/x-1/x+1)=2013/2015
2(1/2-1/x+1)=2013/2015
1/2-1/x+1=2013/2015:2
1/2-1/x+1=2013/4030
1/x+1=1/2-2013/4030
1/x+1=1/2015
Suy ra x+1=2015
x=2014
Vậy x=2014
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(\Rightarrow A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2013}{4050}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
=> x + 1 = 2015
=> x = 2014
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2013.2015}=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2015}\right)=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\cdot\frac{2014}{2015}=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1007}{2015}=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}-\frac{1007}{2015}\Leftrightarrow\frac{1}{x}=\frac{1}{4030}\)
\(\Rightarrow x=4030\)