Bài 2: Giải bài toán sau bằng cách lập phương trình:
Một người đi xe máy từ A đến B với vận tốc 45 km/h. Lúc về người đó đi với vận tốc 40 km/h nên thời gian về nhiều hơn thời gian đi 15 phút. Tính thời gian đi, thời gian về và quãng đường AB.
Bài 3: Giải bài toán sau bằng cách lập phương trình:
Một ca nô xuôi dòng từ bến A đến bến B hết 2 giờ 15 phút. Rồi lại ngược dòng từ bến B về bến A hết 2 giờ 30 phút. Tính khoảng cách từ A đến B, biết vận tốc dòng nước là 2km/h.
Bài 2: \(15phút=\dfrac{1}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là x (km, x>0)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{45}\left(h\right)\)
Thời gian xe máy đi về là : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về nhiều hơn thời gian đi là 15 phút, ta có phương trình :
\(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(<=> 9x -8x = 90\)
\(< =>x=90\left(tm\right)\)
=> Thời gian đi là : \(\dfrac{90}{45}=2\left(h\right)\)
=> Thời gian về là : \(2+0,25=2,25\left(h\right)\)
\(Vậy...\)
Bài 3 :
\(2h15ph=2,25\left(h\right)\)
\(2h30ph = 2,5 (h)\)
Gọi vận tốc thực của ca nô là : x ( km/h , x>2)
=> Độ dài quãng đường AB khi ca nô xuôi dòng là : \((x+2).2,25 (km)\)
=> Độ dài quãng đường AB khi ca nô ngược dòng là : \((x-2).2,5 (km)\)
Vì độ dài quãng đường AB khi ca nô đi xuôi và ngược dòng là như nhau, ta có phương trình :
\((x+2).2,25= (x-2).2,5\)
\(<=> 2,25x + 4,5 = 2,5x - 5 <=> 0,25x = 9,5 <=> x = 38 (km/h) ( nhận)\)
Khoảng cách từ A đến B là : \((38+2),2,25= 90 (Km) \)
\(Vậy...\)