K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

ai làm được thì giúp mình nha , mình cảm ơn trước

20 tháng 10 2018

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)

14 tháng 2 2016

x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z 

Thay x=y=z vào x2014+y2014+z2014=32015 ta được:

3.x3014=3.32014

=>x2014=32014

=>x=3 hoặc x=-3

Vậy x=y=z=3 hoặc x=y=z=-3

14 tháng 2 2016

ko biết duyệt nha

3 tháng 11 2018

\(x^2+y^2+z^2=xy+yz+zx\)

\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Có \(x^{2014}+y^{2014}+z^{2014}=3\)

\(\Rightarrow3.x^{2014}=3\)

\(\Rightarrow x^{2014}=1\)

\(\Rightarrow x=1\)

\(\Rightarrow x=y=z=1\)

Có: \(P=x^{25}+y^4+z^{2015}\)

\(\Rightarrow P=1^{25}+1^4+1^{2015}\)

\(P=1+1+1\)

\(P=3\)

Vậy \(P=3\)

Tham khảo nhé~

3 tháng 11 2018

Ta có: x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)

=>x2014=y2014=z2014

Lại có: x2014+y2014+z2014 = 3

=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)

=>\(x=y=z=\pm1\)

Thay x,y,z vào P rồi tính

1 tháng 2 2019

https://dethi.violet.vn/present/showprint/entry_id/11072330

bạn vào link trên sẽ có full đề và đáp án 

p/s: nhớ k cho mình nha <3

\(\frac{x-2}{4}=-\frac{16}{2-x}\)

\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)

\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)

\(\Leftrightarrow\left(x-2\right)^2=8^2\)

\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)

14 tháng 2 2016

a) Ta có : 

abab   = ab .101

Để abab là số chính phương thì ab chỉ có thể bằng 101.

Mà ab là số có hai chữ số 

=> abab không phải là số chính phương

còn lại tự làm

14 tháng 2 2016

mik làm có đúng ko ?

x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z 

Thay x=y=z vào x2014+y2014+z2014=32015 ta được:

3.x3014=3.32014

=>x2014=32014

=>x=3 hoặc x=-3

Vậy x=y=z=3 hoặc x=y=z=-3

20 tháng 10 2018

a) 

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)

19 tháng 2 2017

giải được bài xyz thôi, bài xy làm sơ thấy lằng nhằng quá nên thôi, làm sau nhá

x2 + y2 + z2 = xy + yz + xz

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2 xz = 0

<=> (x - y)2 + (y - z)2 + (x - z)2 = 0

<=> x = y = z (1)

x2014 + y2014 + z2014 = 32015 (2)

thay (1) vào (2) được

x2014 + x2014 + x2014 = 32015

<=> 3x2014 = 32015

<=> x2014 = 32014

<=> \(\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

mà x = y = z

=> \(\left[\begin{matrix}x=y=z=3\\x=y=z=-3\end{matrix}\right.\)

19 tháng 2 2017

8h trôi qua như vậy quá muộn rồi!!..

\(x^2=y^2+2y+13\) (1) \(\Leftrightarrow x^2=\left(y+1\right)^2+12\Leftrightarrow x^2-z^2=12\)

Hệ nghiệm nguyên(*) \(\left\{\begin{matrix}x-z=a\\x+z=b\end{matrix}\right.\) với x>0; z>1;a,b thuộc Z và a.b=12

Bạn có thể giải tất cả => tìm ra nghiêm

Lập luận giảm bớt hệ vô nghiệm trước

Từ (*) công lại ta có: \(2x=\left(a+b\right)\Rightarrow x=\frac{a+b}{2}\)

x nguyên =>vậy a+b phải chẵn, x>0 =>cặp (2,6) duy nhất

\(x=\frac{2+6}{2}=4\) \(\Rightarrow z=2\Rightarrow y=1\)

Kết luận: Nghiệm(1) là: (x,y)=(4,1)

29 tháng 11 2016

Ta có:

\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

Xét đẳng thức phụ:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Thay vào -M ta có:

\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)

Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)

Ta có:

\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)

29 tháng 11 2016

Bạn làm ngược từ cuối á .... cũng sáng tạo ý