K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10

n + 4 ⋮ n - 1   (1 ≠ n \(\in\) N)

n - 1 + 5 ⋮ n - 1 

          5 ⋮ n - 1

n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}

Lập bảng ta có:

n - 1 - 5 -1  1 5
n - 4 0 2 6
1 ≠ n  \(\in\) N loại nhận nhận nhận

Theo bảng trên ta có n \(\in\) {0; 2; 6}

Vậy n \(\in\) {0; 2; 6}

14 tháng 7 2016

Ai đó giúp mình đi 

hu hu hu hu hu

ko ai giúp mình làm cmn bài tập này 

nhớ giải theo công thức lớp 6 nha 

giúp mình nha

9 tháng 12 2016

toan vui mỗi tuần chứ j

9 tháng 12 2016

có (n+1)! cách làm

27 tháng 1 2017

11 tháng 8 2017

ta có: A= \(n^3-6n^2+11n-6\)

<=>A=\(n^3-n^2-5n^2+5n+6n-6\)

<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)

<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)

<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)

Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6

15 tháng 8 2018

a) Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

31 tháng 7 2017

n^3+11n
=n^3-n+12n
=(n-1)n(n+1)+12n
chia hết cho 6 với mọi n € Z

31 tháng 7 2017

Ta có \(n^3+11n\)=\(n^3-n+12n\)

\(=n(n^2-1)+12n\)

\(=(n-1)(n+1)n+12n\)

Vì n là số nguyên nên \((n-1)(n+1)n\) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6

\(\Rightarrow\)12n cũng chia hết cho 6.

\(\Rightarrow\)\((n-1)(n+1)n+12n\) chia hết cho 6

Vậy \(n^3+11n\) chia hết cho 6 (đpcm)

20 tháng 11 2018

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.

7 tháng 3 2021

n^3+11n chia hết cho 6

n^3+11n=n^3-n+12n

=(n-1)n(n+1)+12n

vậy n^3+11n luôn chia hết cho 6, với mọi n