Cho tam giác ABC có 3 góc nhọn ( AB < AC ) . Vẽ hai đường cao BE và CD cắt nhau tại H. a) Chứng minh tam giác ABE đồng dạng tam giác ACF và suy ra AF . AB = AE . AC . b) Chứng minh tam giác AEF đồng dạng tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC và AE*AC=AB*AF
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
Cảm ơn bạn nhiều, mình vừa mới mò ra cách giải câu b trong vòng 1 ngày, rất là ngắn gọn!
b) Dễ dàng thấy tam giác ADG và tam giác AQG bằng nhau theo trường hợp cạnh góc cạnh
Suy ra AQG^ = 90 độ
Suy ra QG// HE, suy ra đpcm
a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có
góc EHA=góc IHB
=>ΔHEA đồng dạng với ΔHIB
b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có
góc MIB=góc ICH
=>ΔMIB đồng dạng với ΔICH
=>IB/CH=IM/IC
=>IB*IC=CH*IM
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
Suy ra: AH\(\perp\)BC
Xét tứ giác BHCD có
BH//CD
HC//BD
Do đó: BHCD là hình bình hành
b) Ta có: BHCD là hình bình hành(cmt)
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
Ta có: ΔFBC vuông tại F(gt)
mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(FM=\dfrac{BC}{2}\)(1)
Ta có: ΔEBC vuông tại E(gt)
mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(EM=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra MF=ME
hay ΔEMF cân tại M(đpcm)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB/AE=AC/AF và AB*AF=AC*AE
b: Xét ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF