K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Bài này là chứng minh đường thẳng ơ le. 
cách 1:
 

Gọi E,FE,F lần lượt là trung điểm của BC,AC. Ta có EF là đường trung bình của tam giác ABC nên EF//AB.
Ta lại có OF//BH(cùng vuông góc với ACA). Do đó : ˆOFE=ˆABH

Tương tự ˆOEF=ˆBAH

Từ đó ta có tam giác ABH đồng dạng với tam giác EFO

Suy ra AH/OE=AB/EF=2

mà AG/GE=2.
Do đó: AG/EG=AH/OE=2
mà ˆHAG=ˆOEG

⇒ΔHAG∼ΔEOG⇒ˆHGA=ˆEGO

nên ˆHGA+ˆAGO=ˆHGO=180

Vậy H,G,O thẳng hàng.
C2 : dùng véc tơ để tính
C3: dựng đường tròn 9 điểm => ...

10 tháng 8 2016

Ta có : góc DCA = góc DBA = 90 độ ( góc nội tiếp chắn \(\frac{1}{2}\) (O)) 
Xét tứ giác \(BHCD,\) ta có :  \(BH\) // \(DC\) ( vì cùng vuông góc với \(AC\)
                                                \(CH\)// \(DB\) ( vì cùng vuông góc với AB ) 
Do đó tứ giác \(BHCD\) là hình bình hành . 
\(\Rightarrow\) \(H,\)\(I,\)\(D\) thẳng hàng và \(IH=ID\) (tính chất đường chéo hình bình hành) 
Ta lại có : \(OI=\frac{1}{2}AH\) ( đường trung bình tam giác \(DAH\) )                                        \(\left(1\right)\) 
               \(GI=\frac{1}{2}GA\) (tính chất trọng tâm của \(ABC\) )                                               \(\left(2\right)\)
Góc\(HAG\) =    góc \(GIO\) ( so le trong vì \(AH\) // \(OI\) )                                               \(\left(3\right)\)
Do đó tam giác \(GAH\) đồng dạng tam giác \(GIO\) ( c.g.c) 
\(\Rightarrow\) góc \(HGA\) =    góc \(IGO\) (góc tương ứng của 2 tam giác đồng dạng ) 
Vì góc \(HGA\) và góc \(IGO\) là 2 góc ở vị trí đối đỉnh bằng nhau nên ta suy ra \(H,\) \(G,\)\(O,\)thẳng hàng . 
Vậy trong 1 tam giác trực tâm, trọng tâm, tâm đường tròn ngoại tiếp cùng nằm trên 1 đường thẳng đó là đường thẳng Euler !

17 tháng 9 2023

Giả sử tam giác ABC có H vừa là trực tâm, vừa là trọng tâm tam giác ABC. Ta phải chứng minh tam giác ABC đều.

Vì H là trọng tâm tam giác ABC nên AD, BE, CF vừa là các đường cao, vừa là các đường trung tuyến trong tam giác.

Suy ra: AF = BF = AE = CE = BD = CD;

\(AD \bot BC; BE \bot AC; CF \bot AB\)

Xét tam giác ADB và tam giác ADC có:

     AD chung

    \(\widehat{ADB}=\widehat{ADC} (=90^0)\)

     BD = CD (D là trung điểm của đoạn thẳng BC).

Vậy \(\Delta ADB = \Delta ADC\)(c.g.c) nên AB = AC ( 2 cạnh tương ứng).

Tương tự, ta cũng được, AC = BC

Xét tam giác ABC có AB = AC = BC nên là tam giác đều.

Vậy tam giác ABC có trực tâm H cũng là trọng tâm của tam giác thì tam giác ABC đều.

22 tháng 10 2019

Trong ΔABC ta có H là trực tâm nên:

AH ⊥ BC, BH ⊥ AC, CH ⊥ AB

Trong ΔAHB, ta có:

       AC ⊥ BH

       BC ⊥ AH

Vì hai đường cao kẻ từ A và B cắt nhau tại C nên C là trực tâm của tam giác AHB.

Trong ΔHAC, ta có:

       AB ⊥ CH

       CB ⊥ AH

Vì hai đường cao kẻ từ A và C cắt nhau tại B nên B là trực tâm của ΔHAC.

Trong ΔHBC, ta có:

       BA ⊥ HC

       CA ⊥ BH

Vì hai đường cao kẻ từ B và C cắt nhau tại A nên A là trực tâm của tam giác HBC.

28 tháng 8 2017

Giải

Trong ∆ABC ta có H là trực tâm nên

\(\text{ AH⊥BC,BH⊥AC,CH⊥AB}\)

Trong ∆AHB ta có:

\(\text{AC⊥BH }\)

\(\text{BC⊥AH}\)

Hai đường cao kẻ từ A và B cắt nhau tại C.

Vậy C là trực tâm của ∆AHB.

Trong ∆HAC ta có:

\(\text{BA⊥CH}\)

\(\text{CB⊥BH}\)

Hai đường cao kẻ từ A và C cắt nhau tại B, Vậy B là trực tâm của ∆HAC.

Trong ∆HBC ta có:

\(\text{BA⊥HC}\)

\(\text{CA⊥BH}\)

Hai đường cao kẻ từ B và C cắt nhau tại A. Vậy A là trực tâm của ∆HBC.

21 tháng 9 2023

Tham khảo:

+) Xét tam giác HBC ta có :

HD vuông góc với BC \( \Rightarrow \) HD là đường cao tam giác HBC

BF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)BF là đường cao của tam giác HBC

CE vuông góc với HB tại E ( kéo dài HB ) \( \Rightarrow \)CE là đường cao của tam giác HBC

Ta kéo dài HD, BF, CE sẽ cắt nhau tại A

\( \Rightarrow \) A là trực tâm tam giác HBC

 

+) Xét tam giác HAB ta có :

HF vuông góc với AB \( \Rightarrow \) HF là đường cao tam giác HAB

BH vuông góc với AE tại E ( kéo dài HB ) \( \Rightarrow \)AE là đường cao của tam giác HAB

BD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)BD là đường cao của tam giác HAB

Ta kéo dài HF, BD, AE sẽ cắt nhau tại C

\( \Rightarrow \) C là trực tâm tam giác HAB

 

+) Xét tam giác HAC ta có :

HE vuông góc với AC \( \Rightarrow \) HE là đường cao tam giác HAC

AF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)AF là đường cao của tam giác HAC

CD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)CD là đường cao của tam giác HAC

Ta kéo dài CD, HE, AF sẽ cắt nhau tại B

\( \Rightarrow \) B là trực tâm tam giác HAC.

5 tháng 11 2017

Giải bài 1 trang 29 sgk Hình học 11 | Để học tốt Toán 11

+ ΔABC nhọn ⇒ trực tâm H nằm trong ΔABC.

+ Gọi A’ = V(H; ½) (A)

Giải bài 1 trang 29 sgk Hình học 11 | Để học tốt Toán 11

⇒ A’ là trung điểm AH.

+ Tương tự :

B’ = V(H; ½) (B) là trung điểm BH.

C’ = V(H; ½) (C) là trung điểm CH.

⇒ V(H; ½)(ΔABC) = ΔA’B’C’ với A’; B’; C’ là trung điểm AH; BH; CH.

29 tháng 3 2019

Giải bài 61 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi D, E, F là chân các đường vuông góc kẻ từ A, B, C của ΔABC.

⇒ AD ⟘ BC, BE ⟘ AC, CF ⟘ AB.

 ΔHBC có :

AD ⊥ BC nên AD là đường cao từ H đến BC.

BA ⊥ HC tại F nên BA là đường cao từ B đến HC

CA ⊥ BH tại E nên CA là đường cao từ C đến HB.

AD, BA, CA cắt nhau tại A nên A là trực tâm của ΔHCB.