K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

=>AD=AE

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà BD=CE

nên BEDC là hình thang cân

b: góc ABD+góc DBC=góc ABC

góc ACE+góc ECB=góc ACB

mà góc ABD=góc ACE; góc ABC=góc ACB

nên góc DBC=góc ECB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

 

 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

20 tháng 7 2017

mk nha bn

25 tháng 4 2019

   Bài này essy luôn

a)  Xét tam giác BEA và tam giác CDA

Có: \(\widehat{A}\)chung

      AB=BC (gt)

     \(\widehat{BEA}=\widehat{CDA}=90^o\)

 => Tam giác BEA = tam giác CDA (g.c.g)

 => BE=CD

b) Vì tam giác BEA = tam giác CDA (cmt)

 => \(\widehat{ABE}=\widehat{ACD}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

 => \(\widehat{HBC}=\widehat{HCB}\)

 => Tam giác HBC cân tại H

c) Ta có: BE vuông góc AC

               CD vuông góc AB

 => H là trực tâm

 => AH vuông góc BC tại S

mà tam giác ABC cân tại A

 => AH vừa là đường cao vừa là đường phân giác

 => AH là tia phân giác góc BAC

Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm:                                                                                a)BD = CE.                                                                                                                                b)ED // BC.                                                                                                                              c)Giao...
Đọc tiếp

Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm:                                                                                a)BD = CE.                                                                                                                                b)ED // BC.                                                                                                                              c)Giao điểm A, H, M thẳng hàng.                                                                                              d)ED < BC.

1
16 tháng 7 2021

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (ΔABC cân tại A)

∠BAD chung

⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)

⇒ BD = CE (hai cạnh tương ứng)

Vậy BD = CE

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có 

BD=CE

BC chung

Do đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Xét ΔABC có

AE/AB=AD/AC

Do đó: DE//BC