Khối 7 của trường THCS Lê Qúy Đôn có 79 bạn . Để chuẩn bị cho lễ khai giảng , học sinh xếp thành hàng để tham gia diễu hành . Sau khi chia thành các hàng thì còn dư 9 bạn . Hỏi có thể xếp thành mấy hàng ? Mỗi hàng có bao nhiêu bạn ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh của trường đó là x (học sinh)
Vì khi xếp x học sinh thành 20; 25 hoặc 30 hàng đều dư 15 học sinh nên khi xếp (x - 15) học sinh thành 20; 25 hoặc 30 hàng thì vừa đủ.
Do đó ta có \(\left(x-15\right)⋮20;25;30\) và \(x⋮41\)
Mà BCNN(20; 25; 30) = 300 nên ta cũng có thể viết \(\left(x-15\right)⋮300\).
Ta có \(\left(x-15\right)\in\left\{300;600;900\right\}\), suy ra \(x\in\left\{315;615;915\right\}\).
Thử chia các giá trị trên cho 41 chỉ có 615 chia hết cho 41, thỏa mãn đề bài.
Vậy số học sinh của trường đó là 615 học sinh.
\(300=2^2\cdot3\cdot5^2;276=2^2\cdot3\cdot23;252=2^2\cdot3^2\cdot7\)
=>\(ƯCLN\left(300;276;252\right)=2^2\cdot3=12\)
Để có thể xếp 300 học sinh khối 6, 276 học sinh khối 7 và 252 học sinh khối 5 vào các hàng dọc sao cho số học sinh trong mỗi hàng dọc là bằng nhau thì số hàng dọc phải là ước chung của 300;276;252
=>Số hàng dọc nhiều nhất sẽ là ƯCLN(300;276;252)=12 hàng
Khối 6 có 300/12=25 hàng
Khối 7 có 276/12=23 hàng
Khối 8 có 252/12=21 hàng
https://olm.vn/hỏi-đáp/question/299712.html ( vào đây nè ) do lười làm hihi Kb minh nha
Ta có : 300 = 22 . 3 . 52
276 = 22 . 3 . 23
252 = 22 . 32 . 7
=> ƯCLN ( 300 , 276 , 252 ) = 22 . 3 = 12
Vậy có thể xếp nhiều nhất thành 12 hàng dọc để mỗi khối đều ko có ai lẻ hàng
Khi đó ở khối 6 là : 300 : 12 = 25 (hàng)
Khi đó số hàng ngang ở khối 7 là:276 : 12 = 23 ( hang)
Khi đó số hàng ngang ở khối 8 = 252 : 12 = 21 (hàng)
Số hàng dọc nhiều nhất có thể xếp đc là 6 hàng.
Khi đó:
Lớp 6A mỗi hàng có 9 bạn.
Lớp 6B mỗi hàng có 7 bạn.
Lớp 6C mỗi hàng có 8 bạn.
Chúc bn iu học tốt!
Gọi số hàng dọc xếp thành nhiều nhất là a ( a ∈ N* )
Theo đề bài ta có
300 ⋮a
276 ⋮ a
252 ⋮a
a lớn nhất
⇒⇒ a ∈∈ ƯCLN ( 300 ; 276 ; 252 )
300 = 22 . 3 . 52
276 = 22 . 3 . 23
252 = 22 . 32 . 7
a ∈∈ ƯCLN ( 300 ; 276 ; 252 ) = 22 . 3 = 12
⇒⇒ a ∈∈ { 12 } ( thỏa mãn điều kiện )
Vậy có thể xếp thành nhiều nhất 12 hàng dọc để mỗi khối không ai lẻ hàng
Khi đó khối 6 có số hàng ngang là
300 : 12 = 25 ( hàng )
Khi đó khối 7 có số hàng ngang là
276 : 12 = 23 ( hàng )
Khi đó khối 8 có số hàng ngang là
252 : 12 = 21 ( hàng )
Giải :
Có thể xếp thành 12 hàng.
Giải thích các bước giải: Số hàng xếp nhiều nhất chính là ƯCLN (300,276,252 )
+ Ta có : 300 = 2² x 3 x 5² ; 276= 2 ²x 3 x 23 ; 252 = 2² x 3² x 7
=> ƯCLN (300, 276, 252) = 2² x 3 = 12
Vậy có thể xếp nhiều nhất 12 hàng, khi đó mỗi hàng có :
+) Khối 6 : 300 : 12 = 25 ( hàng )
+) Khối 7 : 276 : 12 = 23 ( hàng )
+) Khối 8 : 252 : 12 = 21 ( hàng )
~ HT ~