Bài 4: (2 điểm) Cho góc nhọn xOy, kẻ tia phân giác Ot, lấy điểm M thuộc Ot. Kẻ MA vuông góc với Ox tại A, kẻ MB vuông góc với Oy tại B.. Chứng minh:
a) MA=MB và
b) Gọi D là điểm đối xứng của M qua Ox, E là điểm đối xứng của M qua Oy. Cmr: OD=OE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông AMO và tam giác vuông BMO :
góc MOA = góc MOB (gt)
OM là cạnh chung
=>tam giác vuông AMO = tam giác vuông BMO (cạnh huyền + góc nhọn)
=> OA=OB ( 2 cạnh tương ứng)
b) theo a) ta có : tam giác AMO = tam giác BMO
=>góc AMO = góc BMO
=> MO là tia phân giác của góc AMB
c) gọi C là giao điểm của OM và AB
Xét tam giác OAC và tam giác OBC có:
góc AOC = góc BOC (gt)
OC là cạnh chung
OA = OB (theo a)
=>tam giác OAC = tam giác OBC
=> góc ACO = góc BCO
mà hai góc này kề bù
=> góc ACO = góc BCO = 90 độ
=> OM vuông góc với AB
A)Vì OT là phân giác của góc xoy => O1=O2
-Xét tam giác OAM và tam giác OBM:
O1=O2
OM chung
=> tam giác OAM = tam giác OBM(c.huyền và góc nhọn)
B) vì MA=MB (đ.án câu a)
=>AMB là tam giác cân tại M
C) ko biết :))
a,b: Xét ΔOAM vuông tại A và ΔOBM vuông tạiB co
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>OA=OB và MA=MB
=>ΔOAB cân tại O
c: Xét ΔMAD vuông tại A và ΔMBE vuông tại B có
MA=MB
góc AMD=góc BME
=>ΔMAD=ΔMBE
=>MD=ME
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB và OA=OB
b: M đối xứng D qua Ox
=>OM=OD
M đối xứng E qua Oy
=>OE=OM
=>OD=OE