\(Biet:\frac{a}{a'}+\frac{b}{b'}=1\)\(\frac{b}{b'}=\frac{c}{c'}=1\)cmr: abc+a'b'c'=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a'}\)+\(\frac{b'}{b}\)=1 =>\(\frac{a}{a'}\)*\(\frac{b}{b'}\)+\(\frac{b'}{b}\)*\(\frac{b}{b'}\)=> \(\frac{ab}{a'b'}\)+1=\(\frac{b'}{b}\)=1-\(\frac{c'}{c}\)
=> \(\frac{ab}{a'b'}=\frac{-c}{c'}=>abc=-a'b'c'=>abc+a'b'c'=0\)
nhớ k cho mik nha bạn và cho mik hỏi mik có thể kết bạn với bạn ko?????
#)Giải :
Ta có :
\(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c'=a'bc\left(1\right)\)(vì c khác 0)
\(\frac{b}{b'}=\frac{c'}{c}=1\Leftrightarrow bc+b'c'=b'c=\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)(vì a' khác 0)
Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)
Vì \(\frac{a}{a'}+\frac{b'}{b}=1\) nên ab+a'b'=a'b' (1)
\(\frac{b}{b'}+\frac{c'}{c}=1\)nên bc+b'c'=b'c' (2)
nhân 2 vế của (1) với c, của (2) với a' rồi cộng theo từng vế hai đẳng thức , ta suy ra abc+a'b'c'=0
a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0)
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0)
(1) + (2) => đpcm