K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
31 tháng 3 2022

\(A=\frac{2\sqrt{x}-1}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+3}{\sqrt{x}-2}=2+\frac{3}{\sqrt{x}-2}\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)

mà \(x\inℤ\)suy ra \(\sqrt{x}-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)

\(\Leftrightarrow x\in\left\{1,9,25\right\}\)

9 tháng 2 2019

Để \(A\in Z\Rightarrow5⋮\sqrt{x-3}\)
\(\Rightarrow\sqrt{x-3}\inƯ\left(5\right)=\left\{\pm5;\pm1\right\}\)
\(\Rightarrow x-3\in\left\{1;25\right\}\)
\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=25\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=28\end{cases}}}\)
Vậy \(x\in\left\{4;28\right\}\)

13 tháng 12 2023

\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)

Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

2 tháng 2 2020

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Vì \(1\inℤ\)\(\Rightarrow\)Để B có giá trị nguyên dương thì \(\sqrt{x}-3\)thuộc ước nguyên dương của 4

\(\Rightarrow\sqrt{x}-3\in\left\{1;4\right\}\)\(\Leftrightarrow\sqrt{x}\in\left\{4;7\right\}\)\(\Leftrightarrow x\in\left\{16;49\right\}\)

Vậy \(x\in\left\{16;49\right\}\)

10 tháng 5 2022

chịu

 

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)

=>căn x+1 thuộc {1;2}

=>căn x thuộc {0;1}

mà x<>1

nên x=0