K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a) Ta có: \(\dfrac{2}{5}\cdot x+\dfrac{1}{3}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{2}{5}\cdot x=\dfrac{1}{5}-\dfrac{1}{3}=\dfrac{-2}{15}\)

\(\Leftrightarrow x=\dfrac{-2}{15}:\dfrac{2}{5}=\dfrac{-2}{15}\cdot\dfrac{5}{2}\)

hay \(x=-\dfrac{1}{3}\)

Vậy: \(x=-\dfrac{1}{3}\)

b) Ta có: \(\dfrac{1}{5}+\dfrac{5}{3}:x=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{5}{3}:x=\dfrac{1}{2}-\dfrac{1}{5}=\dfrac{3}{10}\)

\(\Leftrightarrow x=\dfrac{5}{3}:\dfrac{3}{10}=\dfrac{5}{3}\cdot\dfrac{10}{3}\)

hay \(x=\dfrac{50}{9}\)

Vậy: \(x=\dfrac{50}{9}\)

c) Ta có: \(\dfrac{4}{9}-\dfrac{5}{3}\cdot x=-2\)

\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{4}{9}+2=\dfrac{22}{9}\)

\(\Leftrightarrow x=\dfrac{22}{9}:\dfrac{5}{3}=\dfrac{22}{9}\cdot\dfrac{3}{5}\)

hay \(x=\dfrac{22}{15}\)

Vậy: \(x=\dfrac{22}{15}\)

d) Ta có: \(\dfrac{5}{7}:x-3=\dfrac{-2}{7}\)

\(\Leftrightarrow\dfrac{5}{7}:x=\dfrac{-2}{7}+3=\dfrac{19}{21}\)

\(\Leftrightarrow x=\dfrac{5}{7}:\dfrac{19}{21}=\dfrac{5}{7}\cdot\dfrac{21}{19}\)

hay \(x=\dfrac{15}{19}\)

Vậy:\(x=\dfrac{15}{19}\)

Bài 3 là hỗn số hả em?

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

17 tháng 4 2023

1. TÍNH 

`5/7 xx 4 : 5/9 = 5/7 xx 4 xx 9/5 = 20/7 xx 9/5 = 36/7`

`4/9 : 2 xx 5/7 = 4/9 xx 1/2 xx 5/7 = 2/9 xx 10/63 `

`8 xx 2/3 : 1/2= 8xx 2/3 xx 2/1 = 8 xx 2/3 xx 2 = 16/3 xx 2=32/3`

  

 

 

29 tháng 7 2021

ý bạn là nhân đa thức với đa thức hay sao ạ?

Bạn ơi, bạn viết lại đề đi. Khó nhìn quá

10 tháng 2 2022

ok bạn 

15 tháng 12 2023

a,     (\(\dfrac{9}{10}\) - \(\dfrac{15}{16}\)\(\times\) ( \(\dfrac{5}{12}\) - \(\dfrac{11}{15}\) - \(\dfrac{7}{20}\))

=  (\(\dfrac{72}{80}\) - \(\dfrac{75}{80}\))  \(\times\) (\(\)\(\dfrac{25}{60}\) - \(\dfrac{44}{60}\)  - \(\dfrac{21}{60}\))

= - \(\dfrac{3}{80}\)  \(\times\) (- \(\dfrac{2}{3}\))

\(\dfrac{1}{40}\) 

15 tháng 12 2023

b, (-1)3 + (- \(\dfrac{2}{3}\))2 : 2\(\dfrac{2}{3}\) + \(\dfrac{5}{6}\)

=  -13 +   \(\dfrac{4}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{5}{6}\)

= -1 + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{3}{8}\) + \(\dfrac{5}{6}\)

= -1 + \(\dfrac{1}{6}\) + \(\dfrac{5}{6}\)
= -1 + 1

= 0