Cho Δ ABC nhọn ( AB <AC ) đường cao BD và đường cao CE cắt nhau tại H. Gọi K là điểm đối xứng với H qua BC, M là điểm đối xứng với H qua trung điểm I của cạnh BC. a) Chứng minh AE.AB = AD.AC b) Tứ giác BKMC là hình gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔEBC vuông tại E
mà EM là trung tuyến
nên EM=BC/2
ΔDBC vuông tại D
mà DM là trung tuyến
nên DM=BC/2
=>DM=EM
=>ΔMED cân tại M
b: Gọi F là trung điểm của HK
Xét hình thang BHKC có
M,F lần lượtlà trung điểm của BC,HK
nên MF là đường trung bình
=>MF//BH//CK
=>MF vuông góc HK
ΔMED cân tại M
mà MF là đường cao
nên F là trung điểm của ED
FE+EH=FH
FD+DK=FK
mà FE=FD; FH=FK
nên EH=DK
c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có
AN chung
\(\widehat{KAN}=\widehat{QAN}\)
Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)
Suy ra: AK=AQ(hai cạnh tương ứng)
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔBAC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH\(\perp\)BC tại H
b) Xét ΔADM và ΔBHM có
\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)
MA=MB(M là trung điểm của AB)
\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔBHM(g-c-g)
Suy ra: AD=BH(hai cạnh tương ứng)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=20^2-12^2=256\)
hay AH=16(cm)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
b: MF/MB=HF/HB
NE/NC=HE/HC
Xét ΔHFE và ΔHBC có
góc HFE=góc HBC
góc FHE=góc BHC
=>ΔHFE đồng dạng với ΔHBC
=>HF/HB=HE/HC
=>MF/MB=NE/NC
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC}\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gn\right)\)
b) Vì \(\Delta ABE\sim\Delta ACF\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\left(1\right)\)
Theo bài ra, ta có: AB // d
\(\Rightarrow\widehat{ABE}=\widehat{BED}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\widehat{ACF}=\widehat{BED}\)
Xét \(\Delta HED\) và \(\Delta HEC\) có:
\(\widehat{BED}=\widehat{ACF}\)
\(\widehat{EHC}\) chung
\(\Rightarrow\Delta HED\sim\Delta HEC\left(g-g\right)\)
\(\Rightarrow\dfrac{HE}{HD}=\dfrac{HC}{HE}\)
\(\Leftrightarrow HE^2=HD.HC\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
=>AB/AC=AD/AE
=>AB*AE=AC*AD
b: Gọi giao của HK với BC là N
=>N là trung điểm của HK
Xét ΔHKM có HN/HK=HI/HM
nên NI//KM
=>KM//BC
C nằm trên trung trực của HK
=>CH=CK
Xét tứ giác BHCM có
I là trung điểm chung của BC và HM
=>BHCM làhbh
=>BM=CH=CK
=>BKMC là hình thang cân