cho f(x) = (x-1)(x+2)-(x-3) Giải thích vì sao đa thức trên vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(1\right)=1^4+2\cdot1^3-2\cdot1^2-6\cdot1+5\)
\(=1+2-2-6+5=0\)
=>x=1 là nghiệm
\(f\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^3-2\cdot\left(-1\right)^2-6\cdot\left(-1\right)+5\)
\(=1-2-2+6+5=12-4=8\)
=>x=-1 không là nghiệm
\(f\left(2\right)=2^4+2\cdot2^3-2\cdot2^2-6\cdot2+5\)
\(=16+16-8-12+5=8+4+5>0\)
Do đó: x=2 không là nghiệm
\(f\left(-2\right)=\left(-2\right)^4+2\cdot\left(-2\right)^3-2\cdot\left(-2\right)^2-6\cdot\left(-2\right)+5\)
\(=16-16-2\cdot4+12+5=17-8=9>0\)
Do đó: x=-2 không là nghiệm
Ta có \(f\left(x\right)\)có nghiệm là x = -1
=> \(f\left(-1\right)=0\)
=> \(a^2\left(-1\right)^2-b+3=0\)
=> \(a^2-b=-3\)
=> \(-\left(a^2-b\right)=-\left(-3\right)\)
=> \(b-a^2=3\)
và \(g\left(2\right)=4b-2\left(2a^2+3\right)-5\)
=> \(g\left(2\right)=4b-4a^2+6-5\)
=> \(g\left(2\right)=4\left(b-a^2\right)+1\)
=> \(g\left(2\right)=4.3+1=13\ne0\)
Vậy x = 2 không phải là nghiệm của đa thức \(g\left(x\right)=bx^2-\left(2a^2+3\right)x-5\)
Rút gọn ta được :
\(f\left(x\right)=x^4+2x^2+1=\left(x^2+1\right)^2\)
Dễ thấy \(x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
=> đa thức vô nghiệm ( đpcm )
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)\(=x^4+2x^2+1=\left(x^2+1\right)^2\)Dễ thấy \(x^2+1>0\)
=>\(\left(x^2+1\right)^2>0\)(Điều phải chứng minh)
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1
f(x) = x2 +2x -x -2 -x +3 = x2 +1 >0 nên f(x) vô nghiệm
( lop7a7 - trg pt tài năng)