K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(7n+1;6n+1)

=>42n+6-42n-7 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

20 tháng 3 2021

Trình bày ra đi

Gọi d là ƯCLN(7n+4,5n+3)

\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d

\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d

\(\Rightarrow\)35n+20-35n-21 \(⋮\) d

\(\Rightarrow\)-1 chia hết cho d hay d = -1

\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1

24 tháng 2 2022

\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)

\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)

\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)

\(\text{ Theo đề bài ta có :}\)

\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)

\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)

\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)

\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)

\(\Rightarrow 1 \vdots d\)

\(\Rightarrow d = 1\)

\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(#kisibongdem\)

7 tháng 5 2015

Gọi d là ƯCLN(7n+4,5n+3)

=>7n+4 chia hết cho d và 5n+3 chia hết cho d

=>5(7n+4)-7(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d hay d=-1

Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)

Làm ơn cho mình 1 đ ú n g  với,chắc chắn mình đúng......................

10 tháng 2 2018

Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )

Ta cso :

7n + 4 chia hết cho d

5n + 3 chia hết cho d

=> 5 ( 7n + 4 ) chia hết cho d

      7 ( 5n + 3 ) chia hết cho d

=>  35 n + 20 chia hết cho d

      35n + 21 chia hết cho d

=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d

=> 1 chia hết cho d

Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản

NV
30 tháng 3 2023

Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)

\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)

\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau

Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên

30 tháng 3 2023

Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)

⇒ 6n+7 ⋮ d

     3n+2 ⋮ d

⇒6n+7 - 2(3n+2)⋮ d

⇒3⋮d

d∈(1;3)

Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha

 

 

5 tháng 3 2017

Gọi UCLN(4n+1,6n+1) là d

Ta có: 4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n + 3 chia hết cho d

          6n+1 chia hết cho d => 2(6n+1) chia hết cho d => 12n + 2 chia hết cho d

=> 12n + 3  - (12n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

=> UCLN(4n+1,6n+1) = 1

Vậy \(\frac{4n+1}{6n+1}\)là p/s tối giản

26 tháng 11 2019