\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế phải của đẳng thức :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{100}\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right]\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{200}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+...+\frac{1}{200}\)=>đpcm
Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)
Ta có :
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}=VP\left(đpcm\right)\)
Xét :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
Thêm \(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\)vào mỗi vế ta có
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\RightarrowĐPCM\)
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)