K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2022

Ta có : \(P=-9x^2y+8y^3-3x;Q=-8y^3+8x\)

\(\Rightarrow P+Q=-9x^2y+8y^3-3x-8y^3+8x\)

\(=-9x^2y+5x\)

7 tháng 9 2019

HPT \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3y^2-9x+12y=3\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\) (nhân pt thứ nhất của hệ với 3)

Lấy pt trên trừ pt dưới thu được:

\(5y^2+20y=0\Leftrightarrow\left[{}\begin{matrix}y=-4\\y=0\end{matrix}\right.\)

Làm nốt và em không chắc:v

NV
26 tháng 8 2020

\(y^3+3x^2y-3xy^2-2x^3=0\)

\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)

\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)

\(\Rightarrow y=2x\)

Thế xuống dưới:

\(x^4-2x^3-x^2+2x+1=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:

\(t^2-2t+1=0\Leftrightarrow t=1\)

\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)

29 tháng 8 2019

\(HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2-6x+8y=2\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\)

\(\Leftrightarrow5x^2-15x=5\)

\(\Leftrightarrow x^2-3x-1=0\)

\(\Delta=\left(-3\right)^2-4.\left(-1\right)=13\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)

Thế \(x=\frac{3+\sqrt{13}}{2}\)vào phương trình đầu ta được :

\(\frac{22+6\sqrt{13}}{4}+y^2-\frac{9+3\sqrt{13}}{2}+4y=1\)

\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)

Thế \(x=\frac{3-\sqrt{13}}{2}\) vào phương trình đầu ta được :

\(\frac{22-6\sqrt{13}}{4}+y^2-\frac{9-3\sqrt{13}}{2}+4y=1\)

\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};-4\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};-4\right)\end{matrix}\right.\)

a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

b: =(1-2x)(1+2x)

c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

d: =(x+3)^3

e: \(=\left(2x-y\right)^3\)

f: =(x+2y)(x^2-2xy+4y^2)

3 tháng 8 2023

a) 9x4+16y6-24x2y3

=(3x2)2-2.3x2.4y3+(4y3)2

=(3x2-4y3)2

b) 16x2-24xy+9y2

=(4x)2-2.4x.3y+(3y)2

=(4x-3y)2

c) 36x2-(3x-2)2

=(36x-3x+2)(36x+3x-2)

=(33x+2)(39x-2)

d) 27x3+54x2y+36xy2+8y3

=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3

=(3x+2y)3

e) y9-9x2y6+27x4y3-27x6

=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3

=(y3-3x2)3

f) 64x3+1

= (4x)3+13

=(4x+1)[(4x)2-4x.1+12]

=(4x+1)(16x2-4x+1)

e) 27x6-8x3  *sửa đề*

=(3x2)3-(2x)3

=(3x2-2x)[(3x)2+3x2.2x+(2x)2]

=(3x2-2x)(9x2+6x3+4x2)

~~~

10 tháng 10 2021

\(\dfrac{\left(3x+2y\right)^3+9x^2+12xy+y^2}{12x+8y}\)

\(=\dfrac{\left(3x+2y\right)^3+\left(3x+2y\right)^2}{4\left(3x+2y\right)}\)

\(=\dfrac{\left(3x+2y\right)^2+3x+2y}{4}\)