K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)

a) Ta có: \(P=\left(\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{\sqrt{a}}{a-1}\right):\left(\frac{2}{a}-\frac{2-a}{a\sqrt{a}+a}\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{2\left(\sqrt{a}+1\right)}{a\left(\sqrt{a}+1\right)}-\frac{2-a}{a\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\)

\(=\frac{a+2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a\left(\sqrt{a}+1\right)}{a+2\sqrt{a}}\)

\(=\frac{a}{\sqrt{a}-1}\)

b)

ĐKXĐ: \(a\notin\left\{1;0\right\}\)

Để P-2 là số dương thì P-2>0

\(\frac{a}{\sqrt{a}-1}-2>0\)

\(\Leftrightarrow\frac{a}{\sqrt{a}-1}-\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}-1}>0\)

\(\Leftrightarrow\frac{a-2\sqrt{a}+2}{\sqrt{a}-1}>0\)

\(a-2\sqrt{a}+2=\left(\sqrt{a}-1\right)^2+1>0\forall a\)

nên \(\sqrt{a}-1>0\)

\(\Leftrightarrow\sqrt{a}>1\)

\(\Leftrightarrow a>1\)(tm)

Vậy: Khi a>1 thì P-2 là số dương

27 tháng 6 2020

A=\((\frac{\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}):\left(\frac{2\left(\sqrt{a}+1\right)-\left(2-a\right)}{a\left(\sqrt{a}+1\right)}\right)\)

\(A=\left(\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\left(\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a\left(\sqrt{a}+1\right)}{2\sqrt{a}-a}\)

\(A=\frac{a}{\sqrt{a}-1}\)

14 tháng 4 2015

\(=\frac{17}{40}\)