chứng minh rằng với mọi a,b thuộc N tổng 12a + 36b là 1 bội của 3!
khụ khụ, giúp mik với ạ! (em bị cảm lạnh nên cần gấp )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(12a+36b=3\left(4a+12b\right)\)
Vì \(3\left(4a+12b\right)⋮3\)
nên \(12a+36b⋮3\)
hay \(12a+36b\)là bội của 3 với mọi a,b
Ta thấy bội của 3 là số mà chia hết cho 3
12.a + 36.b thì đã có 12 chia hết cho 3 rùi, nên nhân bao nhiêu lần nữa cũng chia hết cho 3, với cả số 36 chia hết cho 3 nên 36 nhân bao nhiêu lần nữa cũng chia hết cho 3. Hai số chia hết cho 3 cộng với nhau thì vẫn là chia hết cho 3
=> ĐPCM
Hội con 🐄 chúc bạn học tốt!!!
12 chia hết cho 12
=> 12a chia hết cho 12 (1)
36 chia hết cho 12
=> 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra 12a+26b chia hết cho 12
Vì 12 chia hết cho 12 và 36 chia hết cho 12 => 12a chia hết cho 12 và 36b chia hết cho 12 => 12a + 36b chia hết cho 12
12 chia hết cho 12
=>12a chia hết cho 12 (1)
36 chia hết cho 12
=>36b chia hết cho 12 (2)
từ 1 và 2
=> (12a+36b) chia hết cho 12
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
Giả sử `A=(n+1)/(n+2)` là số nguyên
`=>n+1 vdots n+2`
`=>n+2-1 vdots n+2`
`=>1 vdots n+2`
`=>n+2 in Ư(1)={1,-1}`
`=>n in {-1,-3}`
Mời bạn kiểm tra lại ạ phải thêm `n in N` hoặc `n ne {-1,-3}`
`=>` giả sử sai
`=>` A là phân số tối giản với `n in N`
Trong 1 tổng, khi tất cả các số hạng đều chia hết cho một số tự nhiên thì tổng cũng chia hết cho số tự nhiên đó. (1)
Trong 1 tích, chỉ cần có 1 thừ số chia hết cho 1 số tự nhiên thì tích chia hết cho số tự nhiên đó. (2)
Ta thấy: Vì 12 chia hết cho 12 nên 12a cũng chia hết cho 12; 36 chia hết cho 12 nên 36b cũng chia hết cho 12 (theo (2)).
Vậy theo (1) thì 12a+36b chia hết cho 12.
\(12a+36b=3.4.a+3.12.b=3.\left(4a+12b\right)\)HAY \(12a+36b\in B\left(3\right)\)