Cho ΔABC có AB=AC, kẻ AH ⊥ BC (H ∈ BC )
a) CM: ΔAHB = ΔAHC
b) Từ H kẻ đường thẳng // với AC, cắt AB tại D. CM: ΔADH là Δ cân
c) Gọi G là giao điểm CD và AH. CM: G là trọng tâm của tam giác ABC
d) CM: AB+AC+BC> AH+BG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
xét tam giác BMC có:
CA vuông góc với BM (gt) => CA đường cao tam giác BMC
MK vuông góc với BC (cmt) => MK đường cao tam giác BMC
Mà CA cắt MK tại D (gt)
từ 3 điều đó => BD là đường cao thứ 3 của tam giác BMC
=> BD vuông góc với CM ( t/c )
k nha,
a. xét tam giác vuông AHB và tam giác vuông AHC, có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )
b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến
=> BH = BC :2 = 10 : 2 =5 cm
Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: AB=căn 4^2+3^2=5cm
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
=>M là trung điểm của AB
Xét ΔABC có
CM,AH là trung tuyến
CM cắt AH tại G
=>G là trọng tâm
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b)
Ta có: ΔAHB=ΔAHC(cmt)
nên HB=HC(hai cạnh tương ứng)
mà B,H,C thẳng hàng(gt)
nên H là trung điểm của BC
Xét ΔABC có
H là trung điểm của BC(cmt)
HD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(gt)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Xét ΔADH có HD=AD(cmt)
nên ΔADH cân tại D(Định nghĩa tam giác cân)