K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Giải hộ e bài này vs ạ mọi ng

c: Thay m=-2 vào pt, ta được:

\(x^2-2x+1=0\)

hay x=1

f: Thay x=-3 vào pt, ta được:

\(9-3m+m+3=0\)

=>-2m+12=0

hay m=6

a) Thay m=1 vào phương trình, ta được:

\(x^4-4x^2-5=0\)

\(\Leftrightarrow x^4+x^2-5x^2-5=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-5\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-5\right)=0\)

mà \(x^2+1>0\forall x\)

nên \(x^2-5=0\)

\(\Leftrightarrow x^2=5\)

hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Vậy: Khi m=1 thì tập nghiệm của phương trình là: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)

NV
12 tháng 3 2021

Với \(m\ne1\):

a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)

b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)

\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)

Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)

c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)

\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)

\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)

15 tháng 4 2021

b, Để phương trình có 2 nghiệm \(\Delta\ge0\)

hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)

\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)

Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)

\(=4m^2+32m+64-2m^2=2m^2+32m+64\)

Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)

a) Thay m=8 vào phương trình, ta được:

\(x^2-2\cdot\left(8+4\right)x+8^2=0\)

\(\Leftrightarrow x^2-24x+64=0\)

\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)

Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)

6 tháng 3 2023

a, m\(x\) -2\(x\) + 3 = 0

Với m  = -4 ta có :

-4\(x\) - 2\(x\) + 3 = 0

-6\(x\)  + 3 = 0

6\(x\) = 3

\(x\) = 3 : 6

\(x\) = \(\dfrac{1}{2}\)

b,  Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0

                   2m - 1 = 0

                  2m = 1

                     m = \(\dfrac{1}{2}\) 

c, m\(x\) - 2\(x\) + 3 = 0

   \(x\)( m -2) + 3 = 0

  \(x\) = \(\dfrac{-3}{m-2}\)

   Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2

d, Để phương trình có nghiệm nguyên thì:   -3 ⋮ m -2

   m - 2 \(\in\) { - 3; -1; 1; 3}

  m \(\in\) { -1; 1; 3; 5}

 

a: Khi x=3 thì pt sẽ là:

3^2-2*3+m+3=0

=>m-6+9+3=0

=>m+6=0

=>m=-6

x1+x2=2

=>x2=2-3=-1

b:

Δ=(-2)^2-4(m+3)

=4-4m-12

=-4m-8

Để phương trình có hai nghiệm phân biệt thì:

-4m-8>=0

=>m<=-2

x1^3+x2^3=8

=>(x1+x2)^3-3x1x2(x1+x2)=8

=>2^3-3*2(m+3)=8

=>6(m+3)=0

=>m+3=0

=>m=-3(nhận)