K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

*So sánh :

Trường hợpGiống nhauKhácnhau
13 cạnh3 cạnh tương ứng bằng nhau 3 cạnh tương ứng tỉ lệ
22 cạnh 1 góc2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau2 cạnh tương ứng tỉ lệ
32 góc bằng nhau 1 cạnh và 2 góc kề tương ứng bằng nhauChỉ 2 góc bằng nhau , không cần có điều kiện cạnh

Trả lời:

So sánh:

Trường hợpGiống nhauKhác nhau
Bằng nhauĐồng dạng
13 cạnh3 cạnh tương ứng bằng nhau3 cạnh tương ứng tỉ lệ
22 cạnh 1 góc2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau2 cạnh tương ứng tỉ lệ
32 góc bằng nhau1 cạnh và 2 góc kề tương ứng bằng nhauChỉ 2 góc bằng nhau, không cần có điều kiện cạnh
8 tháng 4 2018

So sánh:

Trường hợp Giống nhau Khác nhau
Bằng nhau Đồng dạng
1 3 cạnh 3 cạnh tương ứng bằng nhau 3 cạnh tương ứng tỉ lệ
2 2 cạnh 1 góc 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau 2 cạnh tương ứng tỉ lệ
3 2 góc bằng nhau 1 cạnh và 2 góc kề tương ứng bằng nhau Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh
10 tháng 4 2018

So sánh:

Trường hợp Giống nhau Khác nhau
Bằng nhau Đồng dạng
1 3 cạnh 3 cạnh tương ứng bằng nhau 3 cạnh tương ứng tỉ lệ
2 2 cạnh 1 góc 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau 2 cạnh tương ứng tỉ lệ
3 2 góc bằng nhau 1 cạnh và 2 góc kề tương ứng bằng nhau Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh
22 tháng 4 2017

Trường hợp

Giống nhau

Khác nhau

Bằng nhau

Đồng dạng

1

3 cạnh

3 cạnh tương ứng bằng nhau

3 cạnh tương ứng tỉ lệ

2

2 cạnh một góc

Cạnh cạnh tương ứng và một góc kề với hai cạnh bằng nhau

2 cạnh tương ứng tỉ lệ

3

1 cạnh và hai góc kề tương ứng bằng nhau

2 góc tương ứng bằng nhau



25 tháng 3 2022

hai tam giác ABC và DEF có góc A bằng góc D góc B bằng góc E  AB=8cm CD=10cm DE=6cm tính độ dài các cạnh AC,DE,EF biết rằng AC dàu hơn CF là 3cm

- Có 

- Các trường hợp là :

đồng dạng (c.c.c) , đồng dạng (g.g) , đông dạng (c.g.c)

 
Tam giác đồng dạng có hai tính chất quan trọng sau đây:  Ba cặp góc bằng nhau∠A=∠A,   ∠B=∠B,   ∠C=∠C

Ba cặp cạnh tỉ lệ với nhauABAB=BCBC=CACA

đồng dạng (c.c.c) , đồng dạng (g.g) , đồng dạng (c.g.c)

 
Tam giác đồng dạng có hai tính chất quan trọng sau đây:  Ba cặp góc bằng nhau∠A=∠A,   ∠B=∠B,   ∠C=∠C

Ba cặp cạnh tỉ lệ với nhauABAB=BCBC=CACA


Vậy làm thế nào để chứng minh hai tam giác là đồng dạng với nhau. Thông thường chúng ta có ba cách sau đây.

Trường hợp Góc - Góc: hai tam giác có hai cặp góc bằng nhau là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra được∠A=∠A  và   ∠B=∠Bthì chúng ta có thể kết luận rằng hai tam giác ABC và  ABC là đồng dạng với nhau.
 


Trường hợp Cạnh - Cạnh - Cạnh: hai tam giác có ba cặp cạnh tỉ lệ với nhau là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra đượcABAB=BCBC=CACA
thì chúng ta có thể kết luận rằng hai tam giác ABC và  ABC là đồng dạng với nhau.
 




Trường hợp Cạnh - Góc - Cạnh: hai tam giác có hai cặp cạnh tỉ lệ với nhau và cặp góc xen giữa hai cặp cạnh này bằng nhau thì đó là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra đượcABAB= BCBC   và   ∠B=∠Bthì chúng ta có thể kết luận rằng hai tam giác ABC và  ABC là đồng dạng với nhau.
 


Nếu hai tam giác là hai tam giác vuông thì việc chứng minh hai tam giác là đồng dạng còn đơn giản hơn nữa. Chúng ta có các cách sau đây.


Trường hợp Góc Nhọn: hai tam giác vuông có một cặp góc nhọn bằng nhau là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra được∠A=∠Athì chúng ta có thể kết luận rằng hai tam giác vuông ABC và  ABC là đồng dạng với nhau.
 

Trường hợp Cạnh - Cạnh: hai tam giác vuông có hai cặp cạnh tỉ lệ với nhau là hai tam giác đồng dạng với nhau

Ở hình trên đây, nếu chúng ta chỉ ra đượcABAB= BCBC,   hoc   BCBC= CACA,   hoc   CACA= ABABthì chúng ta có thể kết luận rằng hai tam giác vuông ABC và  ABC là đồng dạng với nhau.
HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:

\(\widehat B = \widehat N\) (giả thuyết)

\(\widehat A = \widehat M = 90^\circ \).

Do đó, \(\Delta ABC\backsim\Delta MNP\) (g.g)

b) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:

\(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}}\) (giả thuyết)

\(\widehat A = \widehat M = 90^\circ \).

Do đó, \(\Delta ABC\backsim\Delta MNP\) (c.g.c).

24 tháng 1 2017

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

2 tháng 2 2018

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông