K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

\(\widehat{BAD}\) chung

Do đó: ΔAEC\(\sim\)ΔADB(g-g)

1 tháng 4 2021

Giupps vs

29 tháng 3 2021

Xét \(\Delta AEC\) và \(\Delta ADB\):

\(\widehat{A}:chung\)

\(\widehat{AEC}=\widehat{ADB}(=90^\circ)\)

\(\to\Delta AEC\backsim \Delta ADB(g-g)\)

1 tháng 4 2021

E xem nữa

14 tháng 3 2022

1)Xét 2ΔAEC và ΔADB có:

góc A chung

góc ADB=AEC=90

⇒ΔAEC≈ΔADB(g.g)

14 tháng 3 2022

lm cả phần 2 đi bn

14 tháng 3 2022

Xét 2ΔAEC và ΔADB có:

góc A chung

góc ADB=AEC=90

⇒ΔAEC≈ΔADB(g.g)

21 tháng 1 2023

xét 2 tam giác △AEC và △ADB có:

  ∠A là góc chung

  ∠ADB=AEC=90 độ

=)△AEC=△ADB(g.g.g)

bạn tham khảo nhayeu

27 tháng 2 2021

tự kẻ hình ná

trong tam giác AHC có 

AK=KH

HN=CN

=> KN là đtb=> KN//AC và KN=AC/2

tương tự, ta có MK//AB và MK=AB/2

MN//BC và MN=BC/2

Xét tam giác ABC và tam giác KMN có

KN/AC=MN/BC=MK/AB(=1/2) (cũng là tỉ số đồng dạng của 2 tam giác)

=> tam giác ABC đồng dạng với tam giác KMN(ccc)

11 tháng 10 2023

3:

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

\(\widehat{FCA}\) chung

Do đó: ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>\(CE\cdot CA=CH\cdot CF\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{FCB}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

=>CD*CB=CH*CF=CE*CA

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{EBC}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>\(BD\cdot BC=BH\cdot BE\)

Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

góc DBA chung

Do đó: ΔBDA đồng dạng với ΔBFC

=>BD/BF=BA/BC

=>BD*BC=BF*BA

=>BD*BC=BF*BA=BH*BE

\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)

\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)

\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)

Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)

=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)

Xét ΔABD vuông tại D và ΔCHD vuông tại D có

góc BAD=góc HCD

=>ΔABD đồng dạng vớiΔCHD

29 tháng 11 2023

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)DB tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC