Cho tam giác ABC vuông tại C, điểm D thuộc AB. Gọi M,N là hình chiếu của D trên AC,BC.
a) Chứng minh: MN=CD
b) Tìm vị trí của D trên AB để MN nhỏ nhất, diện tích CMDN lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy ngay DMEA là hình chữ nhật nên DE = AM
Gọi H là chân đường vuông góc hạ từ A xuống BC.
Theo quan hệ giữa đường vuông góc và đường xiên thì \(AM\ge AH\)
Vậy AM nhỏ nhất khi AM = AH hay DE nhỏ nhất khi M trùng H.
ADME là hình chữ nhật (3 góc vuông)
=> ED = AM
AM ngắn nhất khi AM vuông góc vs BC
=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC
a: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
nên AMEN là hình chữ nhật
=>AE=MN
b: AMEN là hình chữ nhật
=>AE cắt MN tại trung điểm của mỗi đường
mà K là trung điểm của MN
nên K là trung điểm của AE
=>A,K,Ethẳng hàng
c:
Xét ΔEMB vuông tại M có \(\widehat{EBM}=45^0\)
nên ΔEMB vuông cân tại M
=>ME=MB
AMEN là hình chữ nhật
=>\(C_{AMEN}=2\left(AM+EM\right)\)
=>\(C_{AMEN}=2\left(AM+MB\right)=2\cdot AB\)
d: Kẻ AH vuông góc BC
=>AH<=AE
Để MN nhỏ nhất thì AE nhỏ nhất
=>H trùng với E
Vậy: Khi E là chân đường cao kẻ từ A xuống BC thì MN nhỏ nhất
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
Suy ra: AD=MN
b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ
nên AMHD là tứ giác nội tiếp
=>A,M,H,D cùng thuộc 1 đường tròn (1)
Xét tứ giác AMDN có góc AMD+góc AND=180 độ
nên AMDN là tứ giác nội tiếp
=>A,M,D,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn
=>AMHN là tứ giác nội tiếp
=>góc AHM=90 độ