Cho tam giác ABC có AB=6cm AC=8cm BC=10cm
a)Cm:tam giác ABC vuông tại A.
b)Vẽ tia Phân giác góc ABC cắt AC tại D từ D kẻ đường vuôgn góc với BC tại A.Cm :CD.CA=CH.CB
c)Vẽ đường cao AK của tam giác ABC.Ak cắt BD tại I.Tính IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)
Suy ra: DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(Cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
a: AC=căn 10^2-6^2=8
b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
góc C chung
=>ΔCHD đồng dạng với ΔCAB
=>CH/CA=CD/CB
=>CH*CB=CD*CA
c: BK=BA^2/BC=3,6cm
AK=6*8/10=4,8cm
Xét ΔBAK có BI là phân giác
nên IK/BK=AI/AB
=>IK/3=AI/5=(AI+IK)/(3+5)=4,8/8=0,6
=>IK=1,8cm
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a. ta có : \(BC^2=AB^2+AC^2\)
\(10^2=8^2+6^2\)
=> ABC vuông tại A ( pitago đảo )
b. xét tam giác vuông BAD và tam giác vuông BED có:
B: góc chung
BD : cạnh chung
Vậy...
=> AD = AE ( 2 góc tưng ứng )
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow100=36+64\)* đúng *
Vậy tam giác ABC vuông tại A
b, Xét tam giác ABD và tam giác CBD ta có :
^ABD = ^CBD ( BD là phân giác )
^BAD = ^BCD = 900
BD _ chung
Vậy tam giác ABD và tam giác CBD ( ch - gn )
=> AD = DC ( 2 cạnh tương ứng )
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
=>DE<DF
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
d: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
mà DF=DC
nên BD là trung trực của CF
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
DO đó: ΔBAD=ΔBED
Suy ra: BA=BE
hay ΔBAE cân tại B
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
Bạn thấy ý nào khó nhất thì đăng chứ đăng nhiều k ai giải đâu