tìm x,y thuộc Z biết:
a (x+4)(y+3)=3
b (2x+1)(y-3)=12
c \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
a)Mk ko hiểu làm gì có y đâu
b)Ta có:\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow3x-12=4y-12\)
\(\Rightarrow3x-4y=0\)
Mà \(x-y=5\Rightarrow x=5+y\)
Do đó:\(3\left(5+y\right)-4y=0\)
\(\Rightarrow15+3y-4y=0\)
\(\Rightarrow15-y=0\)
\(\Rightarrow y=15\)
Do đó:x=20
a) \(\frac{x}{7}=\frac{9}{7}\Rightarrow x=9\)
b) \(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow3\left(x-4\right)=4\left(y-3\right)\)
\(\Rightarrow3x-12=4y-12\)
\(\Rightarrow3x=4y\)
\(\Rightarrow3x=3y+y\)
\(\Rightarrow3x-3y=y\)
\(\Rightarrow3\left(x-y\right)=y\)
\(\Rightarrow3.5=y\)
\(\Rightarrow y=15\)
\(\Rightarrow x-15=5\)
\(\Rightarrow x=5+15\)
\(\Rightarrow x=20\)
Vậy \(y=15,x=20\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)
ADTCDTS=NHAU TA CÓ
\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)
x=15
y=10
z=8
b) Ta có BCNN(2,3,4)=12
\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)
ADTCDTS=NHAU TA CÓ
\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)
\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)
\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)
TUỰ KẾT LUẬN NHA BẠN
C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)
ADTCDTS=NHAU TA CÓ
\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)
\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)
\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)
\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)
\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)
\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)
TỰ KẾT LUẠN NHA