K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath

21 tháng 8 2020

Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau 

CM: tứ giác ABCD là hình thang

HOK TOT

21 tháng 10 2023

1:

Xét ΔCHD có \(\widehat{CHD}+\widehat{HCD}+\widehat{HDC}=180^0\)

=>\(\widehat{HCD}+\widehat{HDC}=180^0-110^0=70^0\)

=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=70^0\)

=>\(\widehat{ADC}+\widehat{BCD}=140^0\)

Xét tứ giác ABCD có

\(\widehat{ADC}+\widehat{BCD}+\widehat{DAB}+\widehat{ABC}=360^0\)

=>\(\widehat{DAB}+\widehat{ABC}=220^0\)

mà \(\widehat{DAB}-\widehat{ABC}=40^0\)

nên \(\widehat{ABC}=\dfrac{220^0-40^0}{2}=90^0\)

=>BA\(\perp\)BC

2:

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{BCD}+\widehat{ADC}=360^0-220^0=140^0\)

=>\(2\cdot\left(\widehat{KCD}+\widehat{KDC}\right)=140^0\)

=>\(\widehat{KCD}+\widehat{KDC}=70^0\)

Xét ΔCKD có

\(\widehat{CKD}+\widehat{KCD}+\widehat{KDC}=180^0\)

=>\(\widehat{CKD}=180^0-70^0=110^0\)

15 tháng 9 2016

2 góc đối của tứ giác đó có tổng bằng 180 độ

25 tháng 7 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath

12 tháng 9 2018

a) Sử dụng tính chất dãy tỉ số bằng nhau.   A ^ = 144 0 ,    B ^ = 108 0 ,   C ^ = 72 0 ,    D ^ = 36 0

b) Sử dụng tổng ba góc trong tam giác tính được C E D ^ = 126 0 .

Chú ý hai phân giác trong và ngoài tại mỗi  góc của một tam giác thì vuông góc nhau, cùng với tổng bốn góc trong tứ giác, ta tính được  C F D ^ = 54 0

NM
12 tháng 8 2021

undefined

Giả sử tia phân giác của góc A và D cắt nhau tại E

ta có : \(\widehat{EAD}+\widehat{EDA}=90^0\Leftrightarrow\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{DAB}=90^0\)

Hay \(\widehat{ADC}+\widehat{DAB}=180^0\) vậy hai góc trên là hai goc bù nhau nên AB//CD

b. tương tự câu a, nếu gọi F là giao điểm của tia phân giác của B và C.

ta có 

\(\widehat{ABC}+\widehat{BCD}=180^0\Rightarrow\widehat{FBC}+\widehat{FCB}=90^0\Rightarrow\widehat{BFC}=90^0\)

Vậy BF vuông góc với FC