K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D=\dfrac{-x+3+1}{x-3}=-1+\dfrac{1}{x-3}\)

D min khi x-3=-1

=>x=2

3 tháng 7 2021

\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)

\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)

\(=>A\ge30+3-9=24\)

dấu"=" xảy ra<=>x=2,y=1

 

a: A=x^2-2x+1+4

=(x-1)^2+4>=4

Dấu = xảy ra khi x=1

b: =x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

c: =2x+8-x^2-4x

=-x^2-2x+8

=-x^2-2x-1+9

=-(x^2+2x+1)+9

=-(x+1)^2+9<=9

Dấu = xảy ra khi x=-1

d: =x^2-2xy+y^2+4y^2+4y+1+2

=(x-y)^2+(2y+1)^2+2>=2

Dấu = xảy ra khi x=y và 2y+1=0

=>x=y=-1/2

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:
\(P=\sum \frac{1}{2xy^2+1}=\sum (1-\frac{2xy^2}{2xy^2+1})\)

\(=3-2\sum\frac{xy^2}{2xy^2+1}\geq 3-2\sum \frac{xy^2}{3\sqrt[3]{x^2y^4}}\) theo BĐT AM-GM.

\(=3-\frac{2}{3}\sum \sqrt[3]{xy^2}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt[3]{xy^2}\leq \frac{x+y+y}{3}\Rightarrow \sum \sqrt[3]{xy^2}\leq \frac{3(x+y+z)}{3}=3\)

$\Rightarrow P\geq 3-\frac{2}{3}.3=1$

Vậy $P_{\min}=1$. Giá trị này đạt tại $x=y=z=1$

 

19 tháng 4 2022

= 3/4 + 1/3 = 13/12

 

5/4 x X = 5/8

X = 5/8 : 5/4

X = 1/2

vậy X = ...

19 tháng 4 2022

\(\dfrac{3}{5}:\dfrac{4}{5}+\dfrac{1}{2}\times\dfrac{2}{3}=\dfrac{3}{4}+\dfrac{1}{3}+\dfrac{9}{12}+\dfrac{4}{12}=\dfrac{11}{12}\)

\(\dfrac{5}{4}\times x=\dfrac{5}{8}\)

\(x=\dfrac{5}{8}:\dfrac{5}{4}\)

\(x=\dfrac{1}{2}\)

12 tháng 1

Tọa độ giao điểm của `(d)` và `(d')` là:

`(m+1)x+3=2x+3`

`<=>mx+x+3-2x-3=0`

`<=>mx-x=0`

`<=>x(m-1)=0`

`<=>[(x=0),(m=1 (loại)):}`

`=>y=2.0+3=0+3=3`

`=>` Tọa độ giao điểm của `(d)` và `(d')` là `(0;3)`.

24 tháng 11 2021

PT hoành độ giao điểm: \(x+3=-2x-3\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\)

Vậy \(A\left(-2;1\right)\) là giao điểm 2 đths

NV
3 tháng 8 2021

\(M=-x^2+12x+8=-\left(x-6\right)^2+44\le44\)

\(M_{max}=44\) khi \(x=6\)

\(N=a^2+9b^2+5a-6b=\left(a+\dfrac{5}{2}\right)^2+\left(3b-1\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\)

\(N_{min}=-\dfrac{41}{4}\) khi \(\left(a;b\right)=\left(-\dfrac{5}{2};\dfrac{1}{3}\right)\)

\(Q=3\left(a-5\right)^2-82\ge-82\)

\(Q_{min}=-82\) khi \(a=5\)