D=4-x/x-3
tìm GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)
\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)
\(=>A\ge30+3-9=24\)
dấu"=" xảy ra<=>x=2,y=1
a: A=x^2-2x+1+4
=(x-1)^2+4>=4
Dấu = xảy ra khi x=1
b: =x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
c: =2x+8-x^2-4x
=-x^2-2x+8
=-x^2-2x-1+9
=-(x^2+2x+1)+9
=-(x+1)^2+9<=9
Dấu = xảy ra khi x=-1
d: =x^2-2xy+y^2+4y^2+4y+1+2
=(x-y)^2+(2y+1)^2+2>=2
Dấu = xảy ra khi x=y và 2y+1=0
=>x=y=-1/2
Lời giải:
\(P=\sum \frac{1}{2xy^2+1}=\sum (1-\frac{2xy^2}{2xy^2+1})\)
\(=3-2\sum\frac{xy^2}{2xy^2+1}\geq 3-2\sum \frac{xy^2}{3\sqrt[3]{x^2y^4}}\) theo BĐT AM-GM.
\(=3-\frac{2}{3}\sum \sqrt[3]{xy^2}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt[3]{xy^2}\leq \frac{x+y+y}{3}\Rightarrow \sum \sqrt[3]{xy^2}\leq \frac{3(x+y+z)}{3}=3\)
$\Rightarrow P\geq 3-\frac{2}{3}.3=1$
Vậy $P_{\min}=1$. Giá trị này đạt tại $x=y=z=1$
= 3/4 + 1/3 = 13/12
5/4 x X = 5/8
X = 5/8 : 5/4
X = 1/2
vậy X = ...
PT hoành độ giao điểm: \(x+3=-2x-3\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\)
Vậy \(A\left(-2;1\right)\) là giao điểm 2 đths
\(M=-x^2+12x+8=-\left(x-6\right)^2+44\le44\)
\(M_{max}=44\) khi \(x=6\)
\(N=a^2+9b^2+5a-6b=\left(a+\dfrac{5}{2}\right)^2+\left(3b-1\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\)
\(N_{min}=-\dfrac{41}{4}\) khi \(\left(a;b\right)=\left(-\dfrac{5}{2};\dfrac{1}{3}\right)\)
\(Q=3\left(a-5\right)^2-82\ge-82\)
\(Q_{min}=-82\) khi \(a=5\)
\(D=\dfrac{-x+3+1}{x-3}=-1+\dfrac{1}{x-3}\)
D min khi x-3=-1
=>x=2