Cho A=(1/22-1).(1/33-1).(1/42-1)........(1/1002-1)
So Sánh A với -1/2
Bạn nào ghi đầy đủ sẽ được mik like nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A là tích của 99 số âm ==>A là số âm
Ta lại có -A=(1-\(\frac{1}{2^2}\))(1-\(\frac{1}{3^2}\))......(1-\(\frac{1}{100^2}\))=\(\frac{3}{4}\).\(\frac{8}{9}\)......\(\frac{99.101}{100^2}\)=\(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\)......\(\frac{99.101}{100^2}\)=\(\frac{1.2.3^2.4^2....99^2.100}{2^2.3^2.4^2.5^2.....100^2}\)=\(\frac{2.100}{2^2.100^2}\)=\(\frac{1}{200}\)==>A=\(\frac{-1}{200}\)>\(\frac{-1}{2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
Điều kiện a \(\ne\) 0, a \(\ne\) -1
Xét vế phải:
\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
= \(\frac{a\left(a+1\right)+\left(a+1\right)}{\left(a+1\right)a\left(a+1\right)}\)
= \(\frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)\left(a+1\right)}\)
= \(\frac{1}{a}\)(đpcm)
ta có \(\frac{1}{a+1}\)+ \(\frac{1}{a\left(a+1\right)}\)= \(\frac{a}{a.\left(a+1\right)}\)+ \(\frac{1}{a.\left(a+1\right)}\)( chỗ này ta có đc là nhờ bước quy đồng ) = \(\frac{a+1}{a.\left(a+1\right)}\)= \(\frac{1}{a}\)( còn chỗ này thì ta có nhờ rút gọn )
^_^ chúc bn học tốt ...........^_^
A = (1/22 - 1).(1/32 - 1).(1/42 - 1)...(1/1002 - 1)
A = -3/22 . (-8/32) . (-15/42) ... (-9999/1002)
A = -(3/22 . 8/32 . 15/42 ... 9999/1002) ( vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)
A = -(1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... 99.101/100.100)
A = -(1.2.3...99/2.3.4...100 . 3.4.5...101/2.3.4...100)
A = -(1/100 . 101/2)
A = -101/200 < -100/200 = -1/2
Vậy A < -1/2
Ta có: \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)< \)
\(< \left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\left(\frac{-1}{2}\right).\left(\frac{-2}{3}\right).\left(\frac{-3}{4}\right)...\left(\frac{-99}{100}\right)=-\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}\right)=\frac{-1}{100}\)
Mà \(\frac{1}{100}< \frac{1}{2}\Rightarrow\frac{-1}{100}>\frac{-1}{2}\) ( vì số âm nên ngược lại số dương)
Nên A > -1/2
CHÚC BẠN HỌC TỐT