phan tich da thuc thanh nhan tu
1. x^3y^3 +x^2y^2+4
2. x^4+y^4+(x+y)^4
3.x^8+x+1
4.x^4+5x^3+10x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x+2=\left(x^3+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
\(b,x^4+5x^3+10x-4=\left(x^4-4\right)+\left(5x^3-10x\right)\)\(=\left(x^2+2\right)\left(x^2-2\right)+5x\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2-2+5x\right)\)
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).
Gợi ý:
Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:
\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)
Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.
(x + 1)(x + 2)(x + 3)(x + 4) - 8
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8
= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8
= (x2 + 5x + 4)(x2 + 5x + 6) - 8
Đặt x2 + 5x + 5 = t
⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)
Thay t = x2 + 5x + 5 vào (1), ta có:
(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9
= (t - 3)(t + 3)
⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)
= (x2 + 5x + 2)(x2 + 5x + 8)
Chúc bạn học tốt !!!!!!!!
1)P\(=9\left(x+3\right)^2-4\left(x-2\right)^2\)\(=\left(3x+9\right)^2-\left(2x-4\right)^2\)
\(=\left(3x+9+2x-4\right)\left(3x+9-2x+4\right)\)(hằng đẳng thức số 3)
\(=\left(5x+5\right)\left(x+13\right)\)
\(=5\left(x+1\right)\left(x+13\right)\)
2)P\(=25\left(2x-y\right)^2-16\left(x+2y\right)^2\)\(=\left(10x-5y\right)^2-\left(4x+8y\right)^2\)
\(=\left(14x+3y\right)\left(6x-13y\right)\)(tương tự câu 1)
Đặt \(A=\left(x-y+4\right)^2-\left(3x+3y-1\right)^2\)
Ta có:
\(\left(x-y+4\right)^2=x^2-xy+4x-yx+y^2-4y+4x-4y+16\)
\(=x^2+y^2-2xy+8x-8y+16\)
\(\left(3x+3y-1\right)^2=9x^2+9xy-3x+9xy+9y^2-3y-3x-3y+1\)
\(=9x^2+9y^2-6x-6y+18xy+1\)
Mình làm đến đây bạn trừ 2 kết quả cho nhau rồi sẽ ra
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)