Cho ΔABC (AB=AC). Trên cạnh AB lấy E, trên cạnh AC lấy F sao cho AE=AF a) chứng minh BÉ= CF và CE=BF b) chứng minh BC//BF c) gọi Ở là giao của BF và CE. Chứng minh AO vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a) Ta chứng minh:
S A E F = S A B C D = 1 4 S A B F
b) Từ câu a suy ra EH = CK
c) Gọi SBDE = S1; SADE = S2;
Ta chứng minh DE = DC;
Ta tính được:
ABDC = S1; SADC = S2, suy ra SABC = 2(S1 + S2) = 2.SABD
a: Xét ΔEBC và ΔFCB có
EB=FC
góc EBC=góc FCB
BC chung
=>ΔEBC=ΔFCB
=>EC=FB
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔICB cân tại I
=>IB=IC
Xét ΔIBE và ΔICF có
IB=IC
IE=IF
BE=CF
=>ΔIBE=ΔICF
c: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
=>góc IAB=góc IAC
=>AI là phân giáccủa góc BAC
a) Xét ∆ADB và ∆ADE có:
AD chung
Góc BAD = góc EAD (AD là tia phân giác của góc BAC)
AB = AE (gt)
⇒∆ADB = ∆ADE (c-g-c)
b) Do ∆ADB = ∆ADE (c-g-c)
⇒góc ABD = góc AED (hai góc tương ứng)
⇒góc AED = 90⁰
Hay DE vuông góc AC
c) Gọi G là giao điểm của CF và AD
Do góc BAD = góc EAD (cmt)
⇒góc FAG = góc CAG
Xét hai tam giác vuông: ∆AGF và ∆AGC có:
AG chung
góc FAG = góc CAG (cmt)
⇒∆AGF = ∆AGC (cạnh góc vuông - góc nhọn kề)
⇒AF = AC (hai cạnh tương ứng)
Mà AF = AB + BF
AC = AE + EC
AB = AE
⇒BF = CE
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
DO đó: ΔFBC=ΔECB
Suy ra: FB=EC
b: Ta có: AF+FB=AB
AE+EC=AC
mà BF=CE
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
1:
Sửa đề: ΔBEC
Xét ΔHBC vuông tại H và ΔBEC vuông tại B có
góc HCB chung
=>ΔHBC đồng dạng với ΔBEC
2: ΔHBC đồng dạng với ΔBEC
=>CH/CB=BH/BE
=>CH/CD=BH/BF
a: Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF
và AB=AC
nên BE=CF
Xét ΔABF và ΔACE có
AB=AC
góc BAF chung
AF=AE
Do đó: ΔABF=ΔACE
Suy ra: BF=CE
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC