K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AF\cdot AB\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc HBD chung

Do đó:ΔBDH\(\sim\)ΔBEC

Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔFHB\(\sim\)ΔEHC

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BE\cdot BH\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CF\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)

9 tháng 3 2022

-Xét △BCF và △BAD có:

\(\widehat{ABC}\) là góc chung

\(\widehat{BFC}=\widehat{BDA}=90^0\)

\(\Rightarrow\)△BCF∼△BAD (g-g).

\(\Rightarrow\dfrac{BC}{BA}=\dfrac{BF}{BD}\) (tỉ số đồng dạng)

\(\Rightarrow BF.BA=BC.BD\left(1\right)\)

-Xét △ACD và △BCE có:

\(\widehat{ACB}\) là góc chung

\(\widehat{ADC}=\widehat{BEC}=90^0\)

\(\Rightarrow\)△ACD∼△BCE (g-g)

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CD}{CE}\) (tỉ số đồng dạng)

\(\Rightarrow CE.CA=CD.BC\left(2\right)\)

-Từ (1) và (2) suy ra:

\(BF.BA+CE.CA=BD.BC+CD.BC=BC\left(BD+CD\right)=BC.BC=BC^2\)

 

23 tháng 3 2022

thoi làm cho có 1 sự lạc đề nhẹ :))

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)