Qua điểm M nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến MN, MP (N,P là các tiếp điểm) và cát tuyến MAB (MA < MB ) nằm trong NMO.
a) Chứng minh: MO vuông góc NP tại H và tứ giác MNOP nội tiếp.
b) Chứng minh: HN là phân giác AHB.
c) Từ A vẽ đường thẳng song song với NB cắt MN tại C; NH tại D. Chứng minh A là trung điểm của CD.
a: góc MNO+góc MPO=180 độ
=>MNOP nội tiếp
Xét (O) có
MN,MP là tiếp tuyến
=>MN=MP
mà ON=OP
nên OM là trung trực của NP
=>OM vuông góc HP
b: ΔOMN vuông tại N có NH vuông góc OM
=>MH*MO=MN^2
Xét ΔMAN và ΔMNB có
góc MNA=góc MBN
góc M chung
=>ΔMAN đồng dạng với ΔMNB
=>MN^2=MA*MB=MH*MO
=>MA/MH=MO/MB
=>ΔMAH đồng dạng với ΔMOB
=>góc MHA=góc MBO
=>góc MHA=góc BHO
=>góc AHN=góc BHN
=>HN là phân giác của góc AHB