bài 1: cho tam giác ABH vuông tại H. có AB=20, BH=12, trên tia đối của tia HB lấy điểm C sao cho AC=\(\dfrac{5}{3}\) AH. Chứng minh: a) tam giác ABH đồng dạng tam giác CAH. b) \(\widehat{BAC}\) =900. kẻ hình nữa nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: HA=căn 20^2-12^2=16cm
AC=5/3*16=80/3(cm)
Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
AC/BA=HA/HB(=4/3)
=>ΔHAC đồng dạng với ΔHBA
b: HC=căn AC^2-AH^2=64/3(cm)
=>BC=12+64/3=100/3(cm)
Xét ΔBHA và ΔBAC có
BH/BA=BA/BC
góc B chung
=>ΔBHA đồng dạng với ΔBAC
=>góc BAC=góc BHA=90 độ
=>ĐPCM
a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có
HA=HK
HB=HI
=>ΔABH=ΔKIH
b: ΔABH=ΔKIH
=>góc ABH=góc KIH
=>AB//IK
c: IK//AB
AB vuông góc AC
=>IK vuông góc AC
=>I,K,E thẳng hàng
d: Xét tứ giác ABKI có
H là trung điểm chung của AK và BI
AK vuông góc BI
=>ABKI là hình thoi
=>AB=AI=IK
=>IK=ID
=>góc IKD=góc IDK
a) xét ΔABH và ΔACH, ta có :
AB = AC (giả thiết)
\(\widehat{ABC}=\widehat{ACB}\) (vì AB = AC => đó là tam giác cân, mà tam giác cân thì có 2 góc ở đáy bằng nhau)
AH là cạnh chung
ð ΔABH = ΔACH (c.c.c)
b) vì ΔABH = ΔACH, nên :
=> HB = HC (2 cạnh tương ứng)
c) hơi khó nha !
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
Bài làm
a) Xét tam giác ABH vuông tại H có:
Theo định lí Pytago có:
AB2 = AH2 + HB2
hay AB2 = 62 + 42
=> AB2 = 36 + 16
=> AB2 = 52
=> AB = \(2\sqrt{13}\) \(\approx\)7,2 ( cm )
b) Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
Hay AC2 = 62 + 92
=> AC2 = 36 + 81
=> AC2 = 117
=> AC = \(3\sqrt{13}\)\(\approx\)10,8 ( cm )
Ta có: BC = 9 + 4 = 13
=> BC2 = 132 = 169
AB2 + AC2 = \(\left(2\sqrt{13}\right)^2+\left(3\sqrt{13}\right)^2=52+117=169\)
=> BC2 = AB2 + AC2
=> Tam giác ABC vuông tại A ( Theo định lí Pytago đảo )
c) Vì DE song song với AH
Theo định lí Thalets có:
\(\frac{CH}{HD}=\frac{AC}{AE}\)
hay \(\frac{9}{6}=\frac{3\sqrt{13}}{AE}\)
=> AE = \(\frac{6.3\sqrt{13}}{9}=\frac{18\sqrt{13}}{9}=2\sqrt{13}\)
Mà AB = \(2\sqrt{13}\)
=> AE = AB ( = \(2\sqrt{13}\)) ( đpcm )
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
a:
AH=căn 20^2-12^2=16cm
AC=5/3*16=80/3cm
HC=căn AC^2-AH^2=căn (80/3)^2-16^2=64/3cm
Xét ΔABH và ΔCAH có
AB/CA=BH/AB=AH/CH
=>ΔABH đồng dạng với ΔCAH
b: ΔABH đồng dạng với ΔCAH
=>góc CAH=góc ABH
=>góc CAH+góc BAH=90 độ
=>góc BAC=90 độ