Giúp mình cho liền 3 tick nha ! Giải thật chi tiết !
a, 1 . 2 + 2 . 3 + 3 . 4 + ............... + 99 . 100
b, 1 . 2 + 2 . 3 + 3 . 4 + ............... + n . ( n + 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 8 - 82 + 8 + 83 + 84+ ......+ 899
A = ( 8 - 8 ) + ( 82 + 83 + 84 +......+ 899 )
A = 82 + 83 + 84 +......+ 899
8A = 83 + 84 + 85 +.......+ 8100
8A - A = ( 83 + 84 +...+ 8100 ) - ( 82 + 83 + ...+ 899 )
7A = 8100 - 82
=> A = \(\frac{8^{100}-8^2}{7}\)
VẬY, \(A=\frac{8^{100}-8^2}{7}\)
A, 1-3+5-7+...+97-99+101
= (1-3)+(5-7)+.....+(97-99)+101
=-2+-2+-2+......+-2+101
* Có số số hạng = - 2 trong biểu thức trên là: (99-1):2 +1= 50 ( số)
= -2 x 50 + 101
= -100 +101
=1
b,
<=> 2x^2 +x-4x-2-5x-15=2x^2-6x+4+8x-2-2x
2x^2-8x-17-2x^2-2=0
-8x-19=0
x=-19/8
\(2.x=\frac{1+2+3+...+9}{1-2+3-4+5-6+7-8+9}+\frac{25.150-60.5+20.75}{1+2+3+...+99}\)
\(2.x=\frac{\left(9+1\right).9:2}{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+9}+\frac{2.3.5^2.\left(5^2-2+2.5\right)}{\left(1+99\right).99:2}\)
\(2.x=\frac{45}{\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+9}+\frac{2.3.5^2.33}{100.99.\frac{1}{2}}\)
\(2x=\frac{45}{5}+\frac{50.99}{50.2.99.\frac{1}{2}}=9+\frac{1}{2.\frac{1}{2}}=9+1=10\)
=> 2x = 10
x = 5
S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
Số các số hạng của tổng \(S\)là :
\(\left(9-1\right)\div1+1=9\)( số hạng )
Tổng của dãy số \(S\)là :
\(\frac{\left(9+1\right).9}{2}=45\)
Đ/S: 45
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
Số các số hạng của tổng \(M\)là :
\(\left(101-1\right)\div1+1=101\)
Tổng của dãy số \(M\)là :
\(\frac{\left(101+1\right).101}{2}=5151\)
Đ/S : 5151
Số số hạng của dãy trên là :
(9 - 1) : 1 + 1 = 9 (số)
Tổng là :
(9 + 1) x 9 : 2 = 45
a) đặt tên biểu thức là A. Ta có :
A = 1.2+2.3+3.4+...+99.100
3A = 1.2.3+2.3.3+3.4.3+...+99.100.3
3A = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
A = 99.100.101 : 3
A = 333300
b) đặt tên biểu thức là B ta có :
B= 1.2+2.3+3.4+...+n.(n+1)
3B = 1.2.3+2.3.3+3.4.3+...+n.(n+1).3
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + n.(n+1).[ (n+2) - ( n -1 ) ]
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n+1).(n+2) - (n-1).n.(n+1)
B = n.(n+1).(n+2) : 3
\(A=1\cdot2+2\cdot3+...+99\cdot100\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot3+...+99\cdot100\cdot3\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101-1\cdot2\cdot3-...-98\cdot99\cdot100=\)
\(3\cdot A=99\cdot100\cdot101\)
\(A=99\cdot100\cdot101\div3=333300\)
CCâu b tương tự