chứng tỏ đa thức 2x^3+1+x^4+4x^2 không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
a,
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(-3x+3x\right)+\left(\dfrac{2}{3}+1\right)\\ =3x^4+0+2x^2+0+\dfrac{5}{3}\\ =3x^4+2x^2+\dfrac{5}{3}\)
b, Ta có
\(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\\ \Rightarrow3x^4+2x^2\ge0\\ \Rightarrow3x^4+2x^2+\dfrac{5}{3}\ge\dfrac{5}{3}>0\)
\(\Rightarrow Q\left(x\right)\) lớn hẳn hơn 0
\(\Rightarrow Q\left(x\right)\) vô nghiệm
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(a,Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(3x-3x\right)+1\\ =3x^4+2x^2+1\\ b,Q\left(x\right)=0\\ \Leftrightarrow3x^4+2x^2+1=0\\ \Delta=b^2-4ac=2^2-4.3.1=-8< 0\)
Vậy Q(x) không có nghiệm
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a) \(P(x) = 5x^3 + 2x^4 - x^2 + 3x^2 - x^3 - 2x^4 +1 -4x^3\)
\(= (2x^4 - 2x^4) + (5x^3 - 4x^3 - x^3) + (-x^2 + 3x^2) + 1 \)
\(=2x^2 +1\)
b) \(P(1) = 2.1^2 +1 = 2 + 1 = 3\)
\(P(-1) = 2.(-1)^2 + 1 = 2 + 1 = 3\)
c) Vì \(2x^2 \geq 0 \) với mọi x; 1 > 0 nên \(2x^2 + 1 > 0\) hay P(x) > 0 với mọi x
=> Đa thức trên không có nghiệm
Ta có:
f(x) = 2x6+3x2+5x3-2x2+4x4-x3+1-4x3-x4.
f(x)=2x6+4x4-x4+5x3-x3-4x3+3x2-2x2+1
f(x)=2x6+3x4+x2+1
Vì 2x6\(\ge\)0
3x4\(\ge\)0
x2\(\ge\)0
\(\Rightarrow\)2x6+3x4+x2+1\(\ge\)1
Do đó f(x) ko có nghiệm
bài này là nghiệm nguyên hả bạn