Cho đường cong (C) là đồ thị của hàm số y = x^2 - 4x + 3. Viết pt tiếp tuyến của đường cong đó. a) tại điểm Mo = (-2, 15) b) tại điểm có tung độ x = 3 c) k = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=6x^2-4x-4\)
\(y'\left(0\right)=-4\)
\(y\left(0\right)=1\)
Do đó pt tiếp tuyến tại điểm có hoành độ x=0 là:
\(y=-4\left(x-0\right)+1\Leftrightarrow y=-4x+1\)
\(f'\left(x\right)=3x^2-6x+1\Rightarrow f'\left(1\right)=-2\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là:
\(\Delta:y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\Rightarrow y=\left(-2\right)\left(x-1\right)-2\)
Ta có y'=3x^2 - 6x +1
gọi M(x0;y0) là tiếp điểm
Ta có x0 =1 do đó yo =1^3 -3.1^2+1-1=-2
y'(1)=3.1^2-6.1+1=-2
Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'(1)(x-1)+(-2)=>y=-2x
a:Sửa đề: y=x^3-3x^2+2
y'=3x^2-3*2x=3x^2-6x
y=2
=>x^3-3x^2=0
=>x=0 hoặc x=3
=>y'=0 hoặc y'=3*3^2-6*3=27-18=9
A(0;2); y'=0; y=2
Phương trình tiếp tuyến có dạng là;
y-2=0(x-0)
=>y=2
A(3;2); y'=9; y=2
Phương trình tiếp tuyến có dạng là:
y-2=9(x-3)
=>y=9x-27+2=9x-25
b: Tiếp tuyến tại M song song với y=6x+1
=>y'=6
=>3x^2-6x=6
=>x^2-2x=2
=>x=1+căn 3 hoặc x=1-căn 3
=>y=0 hoặc y=0
M(1+căn 3;0); y=0; y'=6
Phương trình tiếp tuyến là:
y-0=6(x-1-căn 3)=6x-6-6căn3
M(1-căn 3;0); y=0; y'=6
Phương trình tiếp tuyến là:
y-0=6(x-1+căn 3)
=>y=6x-6+6căn 3
\(y'=2x-4\)
a.
\(y'\left(-2\right)=2.\left(-2\right)-4=-8\)
Phương trình tiếp tuyến:
\(y=-8\left(x+2\right)+15\Leftrightarrow y=-8x-1\)
b.
Gọi \(x_0\) là hoành độ tiếp điểm
\(\Rightarrow x_0^2-4x_0+3=3\Rightarrow x_0^2-4x_0=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y'\left(0\right)=-4\\x_0=4\Rightarrow y'\left(4\right)=4\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=-4\left(x-0\right)+3\\y=4\left(x-4\right)+3\end{matrix}\right.\) \(\Leftrightarrow...\)
c.
Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow y'\left(x_0\right)=k=4\)
\(\Rightarrow2x_0-4=4\Rightarrow x_0=4\)
\(\Rightarrow y\left(4\right)=3\)
Pttt: \(y=4\left(x-4\right)+3\Leftrightarrow y=4x-13\)