K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Nếu n lẻ thì n^3 và n là số lẻ 

=> n^3 + n + 2 là số chẵn mà n lớn hơn hoặc bằng 1

=> n^3 + n + 2 là hợp số (1)

Nếu n chẵn thì n^3 và n là số chẵn 

=> n^3 + n+2 là hợp số (2)

Từ (1) và (2) => n^3+n+2 là hợp số (đpcm!)

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

11 tháng 12 2015

li-ke đi tui giải

ko li-ke ko giải

cần li-ke để giải

có li-ke sẽ giải 

11 tháng 12 2015

2 và 2 là 2 số tự nhiên liên tiếp ?

3 và 3 cũng vậy ?

5 tháng 1 2017

 Từ hằng đẳng thức quen thuộc sau: 

a^n -b^n = (a-b).[a^(n-1) +a^(n-2).b + a^(n-3).b^2 +... + a.b^(n-2) +b^(n-1)] 

Ta dẫn đến hệ quả: 

Nếu a;b là các số tự nhiên khác nhau thì: (a^n-b^n) chia hết cho (a-b) 


Áp dụng kết quả trên; ta được: 

3^(6n) -2^(6n) = (3^6)^n - (2^6)^n = 729^n - 64^n chia hết cho (729-64) 

Vậy: 3^(6n) -2^(6n) chia hết cho 665 

Mà: 665 = 35.19 

Do đó: 3^(6n) -2^(6n) chia hết cho 35

5 tháng 1 2017

bài này tui còn lâu mới học!

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................