K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OEAM có \(\widehat{OEM}=\widehat{OAM}=90^0\)

nên OEAM là tứ giác nội tiếp

b: Xét ΔMAB và ΔMCA có

\(\widehat{MAB}=\widehat{MCA}\)

\(\widehat{AMB}\) chung

Do đó: ΔMAB\(\sim\)ΔMCA

Suy ra: MA/MC=MB/MA

hay \(MA^2=MB\cdot MC\)

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CDA/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếpB/ chứng minh...
Đọc tiếp

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp

B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok  , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))

0

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

loading...  loading...  

23 tháng 10 2023

a: Xét hình thang AHKB có

O là trung điểm của AB

OM//AHKB

Do đó: M là trung điểm của HK

b: Kẻ MN vuông góc với AB

Xét tứ giác AHMN có \(\widehat{AHM}+\widehat{ANM}=180^0\)

=>AHMN là tứ giác nội tiếp

=>\(\widehat{MAN}=\widehat{MHN}\)

Xét tứ giác MNBK có \(\widehat{MNB}+\widehat{MKB}=180^0\)

=>MNBK nội tiếp

=>\(\widehat{MBN}=\widehat{MKN}\)

Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

=>\(\widehat{MAB}+\widehat{MBA}=90^0\)

=>\(\widehat{NHK}+\widehat{NKH}=90^0\)

=>ΔNKH vuông tại N

ΔNKH vuông tại N có NM là trung tuyến

nên MH=MN

Xét (M) có

MN là bán kính

AB vuông góc MN tại N

Do đó: AB là tiếp tuyến của (M)

=>ĐPCM

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS