Biết a/a' = b/b'= c/c' = 4 và a' + b' + c' khác 0; a'-3b'+2c' khác 0
Tính a) a+b+c/a'+b'+c' b) a-3b+2c/a'-3b'+2c'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
Sửa đề: cho a/b = b/c = c/a và a+b+c khác. Biết a=2018 . Tính b và c
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
Do a = 2018 => b = c = 2018
Vậy b = c = 2018
0,abc = 1: (a + b + c)
=> \(\frac{abc}{1000}=\frac{1}{a+b+c}\) => abc . (a+b +c) = 1000
Viết 1000 = 500.2 = 250.4 = 125.8 = 200 .5 = 100.10
thủ các cặp số trên, chỉ cố abc = 125 thỏa mãn
Vậy a = 1; b = 2; c = 5
mình cũng đang tìm