Bài 2. Cho tam giác ABC cân tại A có góc B bằng 700. Đường trung trực của AB cắt đường thẳng BC tại
D. Trên tia đối của AD lấy điểm E sao cho AE = CD.
a) Chứng minh rằng tam giác BDE cân.
b) Tính các góc của tam giác BDE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi: tam giác ABC cân tại A, góc A = 40 độ, đường trung trực AB cắt BC ở D. trên tia đối của AD lấy E sao cho AE =AD.
tính các góc của tam giác BDE
Trả lời: https://lazi.vn/edu/exercise/cho-tam-giac-abc-can-tai-a-goc-a-40-do-duong-trung-truc-cua-ab-cat-bc-tai-da-tinh-goc-cad
Tham khảo link trên.
a) \(\Delta ABC\)cân tại A có \(\widehat{BAC}=40^o\)nên \(\widehat{ABC}=\widehat{ACB}=70^o\)
gọi giao điểm của AB với đường trung trực của nó là O
CM : \(\Delta AOD=\Delta BOD\left(c.g.c\right)\)\(\Rightarrow\)\(\Delta ADB\)cân tại D
\(\Rightarrow\widehat{ABD}=\widehat{BAD}=70^o\); \(AD=BD\)( 1 )
\(\Rightarrow\widehat{A_1}=\widehat{C_1}=180^o-70^o=110^o\)
Xét \(\Delta BEA\)và \(\Delta CDA\)có :
AE = CD ( gt ) ; \(\widehat{A_1}=\widehat{C_1}\)( cmt ) ; AB = AC ( gt )
\(\Rightarrow\Delta BAE=\Delta ACD\left(c.g.c\right)\)\(\Rightarrow BE=AD\)( 2 )
b) Từ ( 1 ) và ( 2 ) suy ra BE = BD nên \(\Delta BED\)cân tại B
Mà \(\widehat{ADC}=180^o-2.70^o=40^o\)
\(\Rightarrow\widehat{BED}=\widehat{EDB}=40^o\)và \(\widehat{EBD}=100^o\)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
a: Xét ΔEAB và ΔDCA có
EA=DC
góc EAB=góc DCA
AB=CA
=>ΔEAB=ΔDCA
=>EB=AD
=>EB=DB
=>ΔDBE cân tại B
b: góc BDA=(180-70)/2=55 độ
=>góc BED=55 độ
góc DBE=180-2*55=70 độ