Cho tam giác ABC vuông tại C (CA > CB) và nội tiếp đường tròn (O). Gọi I
là hình chiếu của O trên AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O) ở M.
a) Chứng minh rằng MC là tiếp tuyến của đường tròn tâm (O).
b) Đường thẳng MB cắt đường tròn (O) tại N khác B. Chứng minh rằng tứ giác NIOB nội tiếp.
c) Lấy điểm P sao cho N là trung điểm AP. Gọi H là hình chiếu của P trên đường thẳng AM.
Chứng minh rằng đường thẳng BC đi qua trung điểm đoạn PH.
Mình đang gấp nên các bn giúp mình nhanh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBI+góc OCI=180 độ
=>OCIB nội tiếp
b: Xét (O) có
IB,IC là tiếp tuyến
=>IB=IC
mà OB=OC
nên OI là trung trực của BC
=>M là trung điểm của BC
Xét ΔOBI vuôngtại B có BM vuông góc OI
nên BM^2=MI*MO
=>BC^2=4*MI*MO
c: góc BMI+góc BDI=180 độ
=>BMID nội tiếp
=>góc MDI=góc MBI=góc MCI
góc IMC+góc IEC=180 độ
=>IMCE nội tiếp
=>góc MCI=góc MEI
=>góc MDI=góc MEI
ΔMCI vuông tại M nên góc MIC+góc MCI=90 độ
góc MCI=góc BAC
=>góc BAC+góc MEC=góc MCI+góc MIC=90 độ
=>ME vuông góc AB
=>ME//ID
=>IEMD là hình bình hành
=>D,G,E thẳng hàng
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
a: ΔOAC cân tại O có OI là đường cao
nên OI là phân giác của góc AOC
Xét ΔOAM và ΔOCM có
OA=OC
góc AOM=góc COM
OM chung
=>ΔOAM=ΔOCM
=>góc OCM=90 độ
=>MC là tiếp tuyến của (O)
b: góc ANB=1/2*sđ cung AB=90 độ
=>AN vuông góc MB
ΔMAB vuông tại A có AN là đường cao
nên MA^2=MN*MB
ΔMAO vuông tại A có AI là đường cao
nên MI*MO=MA^2
=>MN*MB=MI*MO
=>MN/MO=MI/MB
=>ΔMNI đồng dạng với ΔMOB
=>góc MNI=góc MOB
=>góc INB+góc IOB=180 độ
=>INBO nội tiếp