K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

A= (9 x 9) x ... x (9 x 9) x 9 - 2005

A= (...1) x ... x (...1) x 9 - ...5

A= ...1 x ...9 - ...5

A= ...4

Cho like nha

24 tháng 5 2022

Gợi ý: Xóa chữ số 4 ở tận cùng bên trái 1 số có 3 chữ số thì số đó giảm 400 đơn vị.

Ta gọi số cần tìm đó là x 

Theo đề ta có :

\(x-400=\dfrac{1}{9}\)

=> \(x=\dfrac{1}{9}+400=\dfrac{1}{9}+\dfrac{3600}{9}=\dfrac{3601}{9}\)\(=400,1111111\)

33..3.99...9

=33...3.(100...0-1)

=33..300...0-33...3

=33...3266...67(2005 chữ số 3;6)

3 tháng 9 2017

mình thấy đúng rùi.

10 tháng 10

Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:

   \(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)

  +  Ta có: 5 \(\equiv\)  1 (mod 2) ⇒  \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2) 

⇒ \(5^{1^{8^{9^0}}}\)  \(\equiv\) 1 (mod2)

   Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó

\(19^{5^{1^{8^{9^0}}}}\) =  \(19^{2k+1}\)  = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)\(\overline{..9}\) (1)

+ Mặt khác:  9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4) 

⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)

Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó 

\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\)  (2)

Kết hợp (1) và (2) ta có: 

A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)

 

 

 

 

 

2 tháng 8 2016

x-y = 3 =>x=3+y

=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

Áp dụng BĐT chứa dấu giá trị tuyệt đối:

\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)

=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0

=>\(-1\le y\le3\)

Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3

2 tháng 8 2016

B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)

Vậy chữ số tận cùng của A là 1

1 tháng 7 2016

a) \(C=x^3+3x^2+3x+10=\left(x+1\right)^3+9\)

Tại x = 99...9 (2004 chữ số 9) thì: x+1 = 100...0 (2004 chữ số 0) = 102004

Khi đó, C = (102004)3 + 9 = 106012 + 9.

b) \(B=\left(5x-11\right)^2-\left(10x-22\right)\left(5x-9\right)+\left(5x-9\right)^2=\)

\(=\left(5x-11\right)^2-2\cdot\left(5x-11\right)\left(5x-9\right)+\left(5x-9\right)^2=\left(5x-11-\left(5x-9\right)\right)^2=\left(-2\right)^2=4\)

Hay B = 4 với mọi x .

Vậy tại x = 20052006 thì B = 4.

9 tháng 8 2019

\(a,\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{20}{15}+\frac{3}{7}\)

\(=>\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{3}{7}\right)-\frac{20}{15}\)

\(=>1+\frac{16}{21}-\frac{20}{15}\)

\(=>\frac{37}{21}-\frac{20}{15}\)

\(=>\frac{3}{7}\)

\(b,12-8\cdot\left(\frac{3}{2}\right)^3\)

\(=>12-8\cdot\frac{27}{8}\)

\(=>12-27\)

\(=>-15\)

\(c,\left(\frac{1}{9}\right)^{2005}\cdot9^{2005}-96^2:24^2\)

\(=>\left(\frac{1^{2005}^{ }}{9^{2005}}\cdot9^{2005}\right)-\left(96^2:24^2\right)\)

\(=>\left(1^{2005}\right)-16\)

\(=>1-16\)

\(=>-15\)