Cho tứ giác ABCD. AB=a, CD=b. Gọi Để và F lần lượt là trung điểm của AD và BC Chứng minh rằng: EF nhỏ hơn hoặc bằng a+b/2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NN
0
LV
24 tháng 9 2015
EK là đtbinh tam giác => EK=1/2 CD, KF=1/2 AB áp dụng Bđt trong tam giác EKF có EF< EK+KF =>EF< 1/2(AB+CD) . Khi K nằm giữa Evà F thì EF= EK+KF = 1/2(AB+CD) kết hợp cả 2 => đpcm
- Nối AC, lấy K sao cho AK = KC.Nối EK và FK.
- Trong tam giác ACD, ta có :
+ AE = ED
+ AK = KC
=> EK là đường trung bình của tam giác ACD
=> EK = \(\frac{CD}{2}\)= \(\frac{b}{2}\)
-Trong tam giác ABC, ta có :
+ BF = FC
+ AK = KC
=> FK là đường trung bình của tam giác ABC
=> FK = \(\frac{AB}{2}\)= \(\frac{a}{2}\)
-Ta có:
EK + KF = \(\frac{b}{2}\)+ \(\frac{a}{2}\)= \(\frac{a+b}{2}\)
+ TH1 : E,K,F không thẳng hàng
Trong tam giác EKF, ta có :
EF < EK + KF
=> EF < \(\frac{a+b}{2}\)
+ TH2 : E,K,F thẳng hàng
=> EF = EK + KF
=> EF = \(\frac{a+b}{2}\)
Từ 2 trường hợp trên, ta có
EF <= \(\frac{a+b}{2}\)