bài 1 :so sánh
b) \(\frac{1}{2^{330}}\)và \(\frac{1}{3^{225}}\)
c) \(\frac{1}{3^{11}}\)và \(\frac{1}{7^{14}}\)
giúp mk hai câu trên với mai mk nộp rồi làm ơn đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)
\(\frac{2008}{2009};\frac{20}{19}\)
\(1-\frac{2008}{2009}=\frac{1}{2009}\)
\(1-\frac{20}{19}=\frac{-1}{19}=\frac{1}{19}\)
Vì 19 < 2009 Nên \(\frac{1}{2009}< \frac{1}{19}\)
Vậy \(\frac{2008}{2009}>\frac{20}{19}\)
Xét \(\frac{1}{\sqrt{13}}>\frac{1}{\sqrt{14}}\Rightarrow\frac{1}{\sqrt{13}}-1< \frac{1}{\sqrt{14}}+1\)
Mà \(\sqrt{225}< \sqrt{289}\)
\(\Rightarrow\sqrt{225}-\left(\frac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\frac{1}{\sqrt{14}}+1\right)\)
Vậy....................
Đặt \(ab=x;\)\(bc=y;\)\(ca=z\)
Khi đó: \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
<=> \(x^3+y^3+z^3=3xyz\)
<=> \(x^3+y^3+z^3-3xyz=0\)
<=> \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
Nếu: \(x+y+z=0\)thì: \(ab+bc+ca=0\)
\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)
\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)
\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)
Nếu: \(x^2+y^2+z^2-xy-yz-zx=0\)<=> \(x=y=z\)
<=> \(ab=bc=ca\)<=> \(a=b=c\)
\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)
p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo
a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(=\frac{1}{5}+\frac{2}{7}\)
\(=\frac{7}{35}+\frac{10}{35}\)
\(=\frac{17}{35}\)
Vậy \(A=\frac{17}{35}\)
b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)
\(=5.\frac{50}{671}\)
\(=\frac{250}{671}\)
Vậy \(B=\frac{250}{671}\)
b)\(\frac{1}{330}< \frac{1}{225}\)vi day la truong hop cung tu
c)\(\frac{1}{3^{11}}=\frac{1}{177147}\)
\(\frac{1}{7^{14}}=1,474441139_{X10}^{12}\)
nen \(\frac{1}{3^{11}}< \frac{1}{7^{14}}\)vi day cung la truong hop cung tu
\(nha^{ }\)