K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

b)\(\frac{1}{330}< \frac{1}{225}\)vi day la truong hop cung tu

c)\(\frac{1}{3^{11}}=\frac{1}{177147}\)

\(\frac{1}{7^{14}}=1,474441139_{X10}^{12}\)

nen \(\frac{1}{3^{11}}< \frac{1}{7^{14}}\)vi day cung la truong hop cung tu

\(nha^{ }\)

14 tháng 9 2016

Ta có:

 \(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)

\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)

\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)

22 tháng 8 2016

\(\frac{2008}{2009};\frac{20}{19}\)

\(1-\frac{2008}{2009}=\frac{1}{2009}\)

\(1-\frac{20}{19}=\frac{-1}{19}=\frac{1}{19}\)

Vì 19 < 2009 Nên \(\frac{1}{2009}< \frac{1}{19}\)

Vậy \(\frac{2008}{2009}>\frac{20}{19}\)

 

24 tháng 3 2017

sory về hoàn cảnh của bạn. Hu Hu. Tớ giận mình đã ko giúp được bạn.

24 tháng 3 2017

mik chỉ giải được bài 1 với bài 2 thôi!!! 

2 tháng 11 2016

Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100

(-1/3)^500=(-1/3^5)^100=(-1/243)^100

vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500

b, ta có:-(-2)^300=(2^3)^100=8^100

(-3)^200=(-3^2)^100=9^100

vì 8^100<9^100→-(-2)^300<(-3)^200

 

18 tháng 8 2017

1113+1/ 1114+1 = 1114+1/1115+1

24 tháng 4 2018

Xét \(\frac{1}{\sqrt{13}}>\frac{1}{\sqrt{14}}\Rightarrow\frac{1}{\sqrt{13}}-1< \frac{1}{\sqrt{14}}+1\)

Mà \(\sqrt{225}< \sqrt{289}\)

\(\Rightarrow\sqrt{225}-\left(\frac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\frac{1}{\sqrt{14}}+1\right)\)

Vậy....................

1 tháng 8 2018

Đặt  \(ab=x;\)\(bc=y;\)\(ca=z\)

Khi đó:   \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

<=>  \(x^3+y^3+z^3=3xyz\)

<=>  \(x^3+y^3+z^3-3xyz=0\)

<=>  \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

Nếu:  \(x+y+z=0\)thì:  \(ab+bc+ca=0\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)

\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)

Nếu:  \(x^2+y^2+z^2-xy-yz-zx=0\)<=>   \(x=y=z\)

<=>  \(ab=bc=ca\)<=>  \(a=b=c\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)

p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo

23 tháng 10 2016

a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)

\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)

\(=\frac{1}{5}+\frac{2}{7}\)

\(=\frac{7}{35}+\frac{10}{35}\)

\(=\frac{17}{35}\)

Vậy \(A=\frac{17}{35}\)

b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)

\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)

\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)

\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)

\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)

\(=5.\frac{50}{671}\)

\(=\frac{250}{671}\)

Vậy \(B=\frac{250}{671}\)